• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l'inégalité de Visser

Zitouni, Foued 12 1900 (has links)
Soit p un polynôme d'une variable complexe z. On peut trouver plusieurs inégalités reliant le module maximum de p et une combinaison de ses coefficients. Dans ce mémoire, nous étudierons principalement les preuves connues de l'inégalité de Visser. Nous montrerons aussi quelques généralisations de cette inégalité. Finalement, nous obtiendrons quelques applications de l'inégalité de Visser à l'inégalité de Chebyshev. / Let p be a polynomial in the variable z. There exist several inequalities between the coefficents of p and its maximum modulus. In this work, we shall mainly study known proofs of the Visser inquality together with some extensions. We shall finally apply the inequality of Visser to obtain extensions of the Chebyshev inequality.
2

Sur l'inégalité de Visser

Zitouni, Foued 12 1900 (has links)
Soit p un polynôme d'une variable complexe z. On peut trouver plusieurs inégalités reliant le module maximum de p et une combinaison de ses coefficients. Dans ce mémoire, nous étudierons principalement les preuves connues de l'inégalité de Visser. Nous montrerons aussi quelques généralisations de cette inégalité. Finalement, nous obtiendrons quelques applications de l'inégalité de Visser à l'inégalité de Chebyshev. / Let p be a polynomial in the variable z. There exist several inequalities between the coefficents of p and its maximum modulus. In this work, we shall mainly study known proofs of the Visser inquality together with some extensions. We shall finally apply the inequality of Visser to obtain extensions of the Chebyshev inequality.

Page generated in 0.0398 seconds