Spelling suggestions: "subject:"bodule dde comptage nanophotonique"" "subject:"bodule dde comptage multiphotonique""
1 |
Réalisation d'un convertisseur temps-numérique en CMOS 65 nm pour une intégration par pixel dans un module de comptage monophotoniqueRoy, Nicolas January 2015 (has links)
Les applications nécessitant une grande précision temporelle sont de plus en plus nombreuses, notamment lorsqu'elles requièrent des mesures par temps de vol, c'est-à-dire de mesurer le temps de propagation de la lumière ou de particules. La télémétrie laser et certaines modalités d'imagerie médicale dont la tomographie d'émission par positrons (TEP) en sont des exemples. Ces applications requièrent l'attribution d'étampes temporelles aux photons détectés, tout en assurant une précision temporelle exceptionnelle. Le Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS) développe des scanners TEP visant à intégrer des mesures par temps de vol pour améliorer le contraste des images. Pour ce faire, une partie du GRAMS (GRAMS3D) se concentre sur la réalisation de modules de comptage monophotoniques (MCMP) à grande précision temporelle pour intégrer les prochaines générations de scanners TEP. D'autres projets pourraient également se concrétiser dans les prochaines années, dont l'intégration des MCMP du GRAMS dans le Grand Collisionneur de Hadrons (Large Hadron Collider, LHC) au CERN pour des expériences en physique des hautes énergies. Pour atteindre de tels niveaux de performances, le MCMP se compose d'une matrice de photodiodes à avalanche monophotoniques intégrée en 3D avec l'électronique frontale et l'électronique de traitement de l'information. Certains MCMP n'utilisent qu'un seul convertisseur temps-numérique (CTN) pour une matrice de photodétecteurs, limitant le nombre d'étampes temporelles disponibles en plus d'obtenir un temps de propagation différent entre chacun des pixels et le CTN. Pour surpasser ces inconvénients, une autre approche consiste à intégrer un CTN à chacun des pixels. C'est dans cette perspective que le présent ouvrage se concentrera sur le CTN implanté dans chacun des pixels de 50 × 50 µm[indice supérieur 2] du MCMP développé au GRAMS. Le CTN proposé est basé sur une architecture vernier à étage unique afin d'obtenir une excellente résolution et une linéarité indépendante des variations de procédé. Sa taille de 25 × 50 µm[indice supérieur 2] et sa consommation de 163 µW en font un excellent choix pour une implantation matricielle. Le CTN, calibré en temps réel grâce à une boucle à verrouillage de phase numérique, a démontré une résolution de 14,4 ps avec une non-linéarité intégrale (INL)/non-linéarité différentielle (DNL) de 3,3/0,35 LSB et une précision temporelle inférieure à 27 ps[indice inférieur rms]. Les résultats obtenus prouvent qu'il est possible de concilier d'excellentes résolution et précision temporelles avec de très faibles dimensions et consommation.
|
2 |
Conception d'un circuit d'étouffement de photodiodes avalanches monophotoniques pour une intégration matricielle dans un module de comptage monophotoniqueNolet, Frédéric January 2016 (has links)
De nombreuses applications en sciences nucléaires bénéficieraient d’un détecteur possédant une précision temporelle de 10 ps largeur à mi-hauteur à la mesure d’un photon unique. Par exemple, le projet de Time-Imaging Calorimeter en cours de conception au CERN requiert un détecteur possédant une telle précision temporelle afin de mesurer le temps de vol (TDV) et la trajectoire des particules émises lors des collisions dans les expériences du Large Hadron Collider (LHC), ce qui permet d’identifier ces dites particules. De plus, un détecteur possédant une précision temporelle de l’ordre de 10 ps permettra la mitigation de l’empilement des événements. Un second exemple est la tomographie d’émission par positrons (TEP), une modalité d’imagerie médicale non-invasive qui mesure la distribution d’un traceur radioactif afin d’étudier et détecter le cancer. Dans le but de développer un scanner TEP temps réel, le groupe de recherche en appareillage médical de Sherbrooke (GRAMS) travaille sur l’intégration de la mesure du TDV de l’interaction TEP. Les meilleures performances actuelles des détecteurs TEP se situent aux alentours de 150 ps, ce qui n’est pas suffisant pour intégrer le TDV dans un scanner TEP préclinique. Cette mesure exige une résolution temporelle TEP de l’ordre de 10 ps. La solution proposée par le GRAMS est de développer un module de comptage monophotonique (MCMP) 3D qui est composé d’une matrice de photodiodes avalanches monophotoniques (PAMP) reliée par des interconnexions verticales (TSV) à une matrice de circuits de lecture composée d’un circuit d’étouffement et d’un convertisseur temps-numérique. Ce détecteur permet donc de mesurer précisément le temps d’arrivée de chaque photon détecté. Ce document présente la conception du circuit d’étouffement réalisé en technologie CMOS 65 nm de TSMC (Taiwan Semiconductor Manufacturing Company) intégré à chaque pixel de 50 × 50 µm2 dans un MCMP 3D. Afin de répondre au besoin de précision temporelle de 10 ps dans un détecteur 3D, le circuit proposé est un circuit d’étouffement passif avec une recharge active possédant un amplificateur opérationnel en boucle ouverte à titre de comparateur de tension. L’amplificateur opérationnel utilisé possède un seuil ajustable de 0 à 2,5 V afin d’être en mesure d’évaluer le seuil optimal pour la mesure de gigue temporelle avec une PAMP. La taille finale du circuit d’étouffement est de 18 × 30 µm2 incluant l’amplificateur qui est d’une taille de 13 × 8 µm2, ce qui représente respectivement environ 22% et 4% de la taille totale du pixel. Le circuit d’étouffement possède une gigue temporelle de 4 ps largeur à mi-hauteur (LMH). Les résultats obtenus prouvent qu’il est possible d’intégrer de l’électronique de lecture de PAMP dans un MCMP 3D possédant des performances
temporelles sous les 10 ps.
|
Page generated in 0.111 seconds