• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Circuits d'instrumentation intégrés pour caractérisation de diodes monophotoniques à avalanche en technologie CMOS haute tension 0,8 μm

Rhéaume, Vincent-Philippe January 2015 (has links)
Les travaux présentés dans ce mémoire s'inscrivent dans le contexte du Groupe de Recherche en Appareillage Médical de Sherbrooke (le GRAMS), qui cherche à développer des capteurs de photons plus sensibles et plus performants, destinés à être utilisés pour détecter des photons provenant de cristaux scintillateurs notamment utilisés en tomographie d'émission par positrons. L'objectif principal du travail accompli est de faciliter la caractérisation de diodes monophotoniques à avalanche (single-photon avalanche diodes, SPAD) développées sur une technologie CMOS. Cette caractérisation couvre ce qui a trait à l'efficacité de photodétection, la résolution temporelle, les fausses détections, le redéclenchement intempestif, et la diaphonie. Un objectif optionnel est la mise au point d'un circuit réalisant la lecture d'une matrice de SPAD co-intégrée à l'aide d'un procédé d'empilement de circuits intégrés en 3D (3DIC). Ce mémoire de maîtrise présente les circuits électroniques intégrés (sur procédé CMOS 0,8μm haut voltage) et imprimés faisant partie du système électronique mis sur pied pour répondre aux objectifs du projet. Tel qu'il est démontré vers la fin du mémoire, le système a été utilisé pour caractériser des SPAD. Il a permis d'atteindre des performances dignes de l'état de l'art en circuits de contrôle de SPAD. Des améliorations au système sont proposées et seront implémentées sur des versions ultérieures.
2

Conception d’un procédé de microfabrication pour l’assemblage 3D puce-à-puce de circuits intégrés hétérogènes à des fins de prototypage

Maurais, Luc January 2018 (has links)
L’utilisation de photodiodes avalanche monophotoniques (PAMP) pour une utilisation au sein d’imageur préclinique par tomographie d’émission par positrons est d’intérêt. En effet, l’utilisation de ces photodétecteurs intégrés au CMOS est poussée par leurs excellentes performances de résolution en temps ainsi que leur haute sensibilité. Cependant, l’utilisation de ces détecteurs nécessite également un circuit intégré de contrôle visant à protéger les photodiodes de courants trop élevés lors de déclenchement d’avalanches et de contrôler leurs temps mort. Ces circuits de plus en plus sophistiqués nécessitent un espace significatif diminuant ainsi la surface photosensible à la surface de la puce et diminuant leurs sensibilités. L’assemblage 3D puce-à-puce est donc nécessaire dans le but d’augmenter la surface photosensible et de ne pas limiter les fonctionnalités de contrôles électroniques individuelles à chaque PAMP. Ce document présente le développement d’un procédé d’assemblage 3D puce-à-puce visant l’intégration de matrices de PAMP. Les étapes de microfabrication nécessaires visent l’intégration d’interconnexions verticales au travers du substrat (TSV) permettant de transmettre les signaux d’une couche à l’autre et le collage 3D de ceux-ci. De plus, des mesures de caractéristiques de bruits ont été effectuées sur des puces ayant subi certaines étapes de microfabrication du procédé d’assemblage 3D. Ces mesures ont été effectuées dans le but de déterminer l’impact potentiel du procédé d’assemblage sur les performances des PAMP intégrés en 3D.
3

Conception d'un circuit d'étouffement de photodiodes avalanches monophotoniques pour une intégration matricielle dans un module de comptage monophotonique

Nolet, Frédéric January 2016 (has links)
De nombreuses applications en sciences nucléaires bénéficieraient d’un détecteur possédant une précision temporelle de 10 ps largeur à mi-hauteur à la mesure d’un photon unique. Par exemple, le projet de Time-Imaging Calorimeter en cours de conception au CERN requiert un détecteur possédant une telle précision temporelle afin de mesurer le temps de vol (TDV) et la trajectoire des particules émises lors des collisions dans les expériences du Large Hadron Collider (LHC), ce qui permet d’identifier ces dites particules. De plus, un détecteur possédant une précision temporelle de l’ordre de 10 ps permettra la mitigation de l’empilement des événements. Un second exemple est la tomographie d’émission par positrons (TEP), une modalité d’imagerie médicale non-invasive qui mesure la distribution d’un traceur radioactif afin d’étudier et détecter le cancer. Dans le but de développer un scanner TEP temps réel, le groupe de recherche en appareillage médical de Sherbrooke (GRAMS) travaille sur l’intégration de la mesure du TDV de l’interaction TEP. Les meilleures performances actuelles des détecteurs TEP se situent aux alentours de 150 ps, ce qui n’est pas suffisant pour intégrer le TDV dans un scanner TEP préclinique. Cette mesure exige une résolution temporelle TEP de l’ordre de 10 ps. La solution proposée par le GRAMS est de développer un module de comptage monophotonique (MCMP) 3D qui est composé d’une matrice de photodiodes avalanches monophotoniques (PAMP) reliée par des interconnexions verticales (TSV) à une matrice de circuits de lecture composée d’un circuit d’étouffement et d’un convertisseur temps-numérique. Ce détecteur permet donc de mesurer précisément le temps d’arrivée de chaque photon détecté. Ce document présente la conception du circuit d’étouffement réalisé en technologie CMOS 65 nm de TSMC (Taiwan Semiconductor Manufacturing Company) intégré à chaque pixel de 50 × 50 µm2 dans un MCMP 3D. Afin de répondre au besoin de précision temporelle de 10 ps dans un détecteur 3D, le circuit proposé est un circuit d’étouffement passif avec une recharge active possédant un amplificateur opérationnel en boucle ouverte à titre de comparateur de tension. L’amplificateur opérationnel utilisé possède un seuil ajustable de 0 à 2,5 V afin d’être en mesure d’évaluer le seuil optimal pour la mesure de gigue temporelle avec une PAMP. La taille finale du circuit d’étouffement est de 18 × 30 µm2 incluant l’amplificateur qui est d’une taille de 13 × 8 µm2, ce qui représente respectivement environ 22% et 4% de la taille totale du pixel. Le circuit d’étouffement possède une gigue temporelle de 4 ps largeur à mi-hauteur (LMH). Les résultats obtenus prouvent qu’il est possible d’intégrer de l’électronique de lecture de PAMP dans un MCMP 3D possédant des performances temporelles sous les 10 ps.

Page generated in 0.1063 seconds