• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d'un circuit d'étouffement de photodiodes avalanches monophotoniques pour une intégration matricielle dans un module de comptage monophotonique

Nolet, Frédéric January 2016 (has links)
De nombreuses applications en sciences nucléaires bénéficieraient d’un détecteur possédant une précision temporelle de 10 ps largeur à mi-hauteur à la mesure d’un photon unique. Par exemple, le projet de Time-Imaging Calorimeter en cours de conception au CERN requiert un détecteur possédant une telle précision temporelle afin de mesurer le temps de vol (TDV) et la trajectoire des particules émises lors des collisions dans les expériences du Large Hadron Collider (LHC), ce qui permet d’identifier ces dites particules. De plus, un détecteur possédant une précision temporelle de l’ordre de 10 ps permettra la mitigation de l’empilement des événements. Un second exemple est la tomographie d’émission par positrons (TEP), une modalité d’imagerie médicale non-invasive qui mesure la distribution d’un traceur radioactif afin d’étudier et détecter le cancer. Dans le but de développer un scanner TEP temps réel, le groupe de recherche en appareillage médical de Sherbrooke (GRAMS) travaille sur l’intégration de la mesure du TDV de l’interaction TEP. Les meilleures performances actuelles des détecteurs TEP se situent aux alentours de 150 ps, ce qui n’est pas suffisant pour intégrer le TDV dans un scanner TEP préclinique. Cette mesure exige une résolution temporelle TEP de l’ordre de 10 ps. La solution proposée par le GRAMS est de développer un module de comptage monophotonique (MCMP) 3D qui est composé d’une matrice de photodiodes avalanches monophotoniques (PAMP) reliée par des interconnexions verticales (TSV) à une matrice de circuits de lecture composée d’un circuit d’étouffement et d’un convertisseur temps-numérique. Ce détecteur permet donc de mesurer précisément le temps d’arrivée de chaque photon détecté. Ce document présente la conception du circuit d’étouffement réalisé en technologie CMOS 65 nm de TSMC (Taiwan Semiconductor Manufacturing Company) intégré à chaque pixel de 50 × 50 µm2 dans un MCMP 3D. Afin de répondre au besoin de précision temporelle de 10 ps dans un détecteur 3D, le circuit proposé est un circuit d’étouffement passif avec une recharge active possédant un amplificateur opérationnel en boucle ouverte à titre de comparateur de tension. L’amplificateur opérationnel utilisé possède un seuil ajustable de 0 à 2,5 V afin d’être en mesure d’évaluer le seuil optimal pour la mesure de gigue temporelle avec une PAMP. La taille finale du circuit d’étouffement est de 18 × 30 µm2 incluant l’amplificateur qui est d’une taille de 13 × 8 µm2, ce qui représente respectivement environ 22% et 4% de la taille totale du pixel. Le circuit d’étouffement possède une gigue temporelle de 4 ps largeur à mi-hauteur (LMH). Les résultats obtenus prouvent qu’il est possible d’intégrer de l’électronique de lecture de PAMP dans un MCMP 3D possédant des performances temporelles sous les 10 ps.
2

Modélisation de photodétecteurs à base de matrices de diodes avalanche monophotoniques pour tomographie d'émission par positrons

Corbeil Therrien, Audrey January 2013 (has links)
La tomographie d'émission par positrons (TEP) est un outil précieux en recherche préclinique et pour le diagnostic médical. Cette technique permet d'obtenir une image quantitative de fonctions métaboliques spécifiques par la détection de photons d'annihilation. La détection des ces photons se fait à l'aide de deux composantes. D'abord, un scintillateur convertit l'énergie du photon 511 keV en photons du spectre visible. Ensuite, un photodétecteur convertit l'énergie lumineuse en signal électrique. Récemment, les photodiodes avalanche monophotoniques (PAMP) disposées en matrice suscitent beaucoup d'intérêt pour la TEP. Ces matrices forment des détecteurs sensibles, robustes, compacts et avec une résolution en temps hors pair. Ces qualités en font un photodétecteur prometteur pour la TEP, mais il faut optimiser les paramètres de la matrice et de l'électronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une opération difficile, car les différents paramètres interagissent de manière complexe avec les processus d'avalanche et de génération de bruit. Enfin, l'électronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser différentes stratégies de lecture. Pour répondre à cette question, la solution la plus économique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce mémoire présentent le développement d'un tel simulateur. Celui-ci modélise le comportement d'une matrice de PAMP en se basant sur les équations de physique des semiconducteurs et des modèles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les déclenchements intempestifs corrélés et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'électronique de lecture plus adaptées à ce type de détecteur. Au final, le simulateur vise à quantifier l'impact des paramètres du photodétecteur sur la résolution en énergie et la résolution en temps et ainsi optimiser les performances de la matrice de PAMP. Par exemple, l'augmentation du ratio de surface active améliore les performances, mais seulement jusqu'à un certain point. D'autres phénomènes liés à la surface active, comme le bruit thermique, provoquent une dégradation du résultat. Le simulateur nous permet de trouver un compromis entre ces deux extrêmes. Les simulations avec les paramètres initiaux démontrent une efficacité de détection de 16,7 %, une résolution en énergie de 14,2 % LMH et une résolution en temps de 0.478 ns LMH. Enfin, le simulateur proposé, bien qu'il vise une application en TEP, peut être adapté pour d'autres applications en modifiant la source de photons et en adaptant les objectifs de performances.
3

Conception d'un circuit d'étouffement pour photodiodes à avalanche en mode Geiger pour intégration hétérogène 3D

Boisvert, Alexandre January 2014 (has links)
Le Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS) travaille actuellement sur un programme de recherche portant sur des photodiodes à avalanche monophotoniques (PAMP) opérées en mode Geiger en vue d'une application à la tomographie d’émission par positrons (TEP). Pour opérer dans ce mode, la PAMP, ou SPAD selon l’acronyme anglais (Single Photon Avalanche Diode), requiert un circuit d'étouffement (CE) pour, d’une part, arrêter l’avalanche pouvant causer sa destruction et, d’autre part, la réinitialiser en mode d’attente d’un nouveau photon. Le rôle de ce CE comprend également une électronique de communication vers les étages de traitement avancé de signaux. La performance temporelle optimale du CE est réalisée lorsqu’il est juxtaposé à la PAMP. Cependant, cela entraîne une réduction de la surface photosensible ; un élément crucial en imagerie. L’intégration 3D, à base d'interconnexions verticales, offr une solution élégante et performante à cette problématique par l’empilement de circuits intégrés possédant différentes fonctions (PAMP, CE et traitement avancé de signaux). Dans l’approche proposée, des circuits d’étouffement de 50 [mu]m x 50 [mu]m réalisés sur une technologie CMOS 130 nm 3D Tezzaron, contenant chacun 112 transistors, sont matricés afin de correspondre à une matrice de PAMP localisée sur une couche électronique supérieure. Chaque circuit d'étouffement possède une gigue temporelle de 7,47 ps RMS selon des simulations faites avec le logiciel Cadence. Le CE a la flexibilité d'ajuster les temps d'étouffement et de recharge pour la PAMP tout en présentant une faible consommation de puissance ( ~ 0,33 mW à 33 Mcps). La conception du PAMP nécessite de supporter des tensions supérieures aux 3,3 V de la technologie. Pour répondre à ce problème, des transistors à drain étendu (DEMOS) ont été réalisés. En raison de retards de production par les fabricants, les circuits n’ont pu être testés physiquement par des mesures. Les résultats de ce mémoire sont par conséquent basés sur des résultats de simulations avec le logiciel Cadence.

Page generated in 0.0819 seconds