Spelling suggestions: "subject:"moduli off curves"" "subject:"moduli oof curves""
1 |
Birational geometry of the moduli spaces of curves with one marked pointJensen, David Hay 05 October 2010 (has links)
Abstract not available. / text
|
2 |
Fibrations of M[subscript g], [subscript n] /Gibney, Angela Caroline, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 61-64). Available also in a digital version from Dissertation Abstracts.
|
3 |
Espaces de modules analytiques de fonctions non quasi-homogènes / Analytic moduli spaces of non quasi-homogeneous functionsLoubani, Jinan 27 November 2018 (has links)
Soit f un germe de fonction holomorphe dans deux variables qui s'annule à l'origine. L'ensemble zéro de cette fonction définit un germe de courbe analytique. Bien que la classification topologique d'un tel germe est bien connue depuis les travaux de Zariski, la classification analytique est encore largement ouverte. En 2012, Hefez et Hernandes ont résolu le cas irréductible et ont annoncé le cas de deux components. En 2015, Genzmer et Paul ont résolu le cas des fonctions topologiquement quasi-homogènes. L'objectif principal de cette thèse est d'étudier la première classe topologique de fonctions non quasi-homogènes. Dans le deuxième chapitre, nous décrivons l'espace local des modules des feuillages de cette classe et nous donnons une famille universelle de formes normales analytiques. Dans le même chapitre, nous prouvons l'unicité globale de ces formes normales. Dans le troisième chapitre, nous étudions l'espace des modules de courbes, qui est l'espace des modules des feuillages à une équivalence analytique des séparatrices associées près. En particulier, nous présentons un algorithme pour calculer sa dimension générique. Le quatrième chapitre présente une autre famille universelle de formes normales analytiques, qui est globalement unique aussi. En effet, il n'ya pas de modèle canonique pour la distribution de l'ensemble des paramètres sur les branches. Ainsi, avec cette famille, nous pouvons voir que la famille précédente n'est pas la seule et qu'il est possible de construire des formes normales en considérant une autre distribution des paramètres. Enfin, pour la globalisation, nous discutons dans le cinquième chapitre une stratégie basée sur la théorie géométrique des invariants et nous expliquons pourquoi elle ne fonctionne pas jusqu'à présent. / Let f be a germ of holomorphic function in two variables which vanishes at the origin. The zero set of this function defines a germ of analytic curve. Although the topological classification of such a germ is well known since the work of Zariski, the analytical classification is still widely open. In 2012, Hefez and Hernandes solved the irreducible case and announced the two components case. In 2015, Genzmer and Paul solved the case of topologically quasi-homogeneous functions. The main purpose of this thesis is to study the first topological class of non quasi-homogeneous functions. In chapter 2, we describe the local moduli space of the foliations in this class and give a universal family of analytic normal forms. In the same chapter, we prove the global uniqueness of these normal forms. In chapter 3, we study the moduli space of curves which is the moduli space of foliations up to the analytic equivalence of the associated separatrices. In particular, we present an algorithm to compute its generic dimension. Chapter 4 presents another universal family of analytic normal forms which is globally unique as well. Indeed, there is no canonical model for the distribution of the set of parameters on the branches. So, with this family, we can see that the previous family is not the only one and that it is possible to construct normal forms by considering another distribution of the parameters. Finally, concerning the globalization, we discuss in chapter 5 a strategy based on geometric invariant theory and explain why it does not work so far.
|
4 |
The geometry of moduli spaces of pointed curves, the tensor product in the theory of Frobenius manifolds and the explicit Künneth formula in quantum cohomologyKaufmann, Ralph M. January 1998 (has links)
Thesis (doctoral)--Bonn, 1997. / Includes bibliographical references (p. 93-95).
|
5 |
Rational Points of Universal Curves in Positive CharacteristicsWatanabe, Tatsunari January 2015 (has links)
<p>For the moduli stack $\mathcal{M}_{g,n/\mathbb{F}_p}$ of smooth curves of type $(g,n)$ over Spec $\mathbb{F}_p$ with the function field $K$, we show that if $g\geq3$, then the only $K$-rational points of the generic curve over $K$ are its $n$ tautological points. Furthermore, we show that if $g\geq 3$ and $n=0$, then Grothendieck's Section Conjecture holds for the generic curve over $K$. A primary tool used in this thesis is the theory of weighted completion developed by Richard Hain and Makoto Matsumoto.</p> / Dissertation
|
6 |
Counting differentials with fixed residues:Prado Godoy, Miguel Angel January 2024 (has links)
Thesis advisor: Dawei Chen / We investigate the count of meromorphic differentials on the Riemann sphere pos-sessing a single zero, multiple poles with prescribed orders, and fixed residues at each pole. Gendron and Tahar previously examined this problem with respect to general residues using flat geometry, while Sugiyama approached it from the perspective of fixed-point multipliers of polynomial maps in the case of simple poles. In our study, we employ intersection theory on compactified moduli spaces of differentials, enabling us to handle arbitrary residues and pole orders, which provides a complete solution to
this problem. We also determine interesting combinatorial properties of the solution formula. This thesis is organized as follows: In Chapter 1 we give an introduction to the problem and summarize the main results obtained. In Chapter 2 we review the compactification of moduli spaces of differentials and introduce various divisor classes. In Section 2.3 we explain how to identify the universal line bundle class with the divisor class of the locus of differentials satisfying a general given residue tuple and prove Theorem 1.0.1 (i). In Section 2.4 we impose exactly one independent partial sum vanishing condition to the residues and prove Theorem 1.0.1 (ii). In Section 2.5 we give a polynomial expression in terms of the zero order for the degree of mixed products between powers of the dual tautological class and the psi-class of the zero. Finally in Chapter 3 we prove Theorem 1.0.2 for arbitrary residues and investigate combinatorial properties of the solution formula. We have also verified our formula numerically for a number of cases by using the software package [CMZ2]. / Thesis (PhD) — Boston College, 2024. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
|
Page generated in 0.0573 seconds