• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Espaces de modules analytiques de fonctions non quasi-homogènes / Analytic moduli spaces of non quasi-homogeneous functions

Loubani, Jinan 27 November 2018 (has links)
Soit f un germe de fonction holomorphe dans deux variables qui s'annule à l'origine. L'ensemble zéro de cette fonction définit un germe de courbe analytique. Bien que la classification topologique d'un tel germe est bien connue depuis les travaux de Zariski, la classification analytique est encore largement ouverte. En 2012, Hefez et Hernandes ont résolu le cas irréductible et ont annoncé le cas de deux components. En 2015, Genzmer et Paul ont résolu le cas des fonctions topologiquement quasi-homogènes. L'objectif principal de cette thèse est d'étudier la première classe topologique de fonctions non quasi-homogènes. Dans le deuxième chapitre, nous décrivons l'espace local des modules des feuillages de cette classe et nous donnons une famille universelle de formes normales analytiques. Dans le même chapitre, nous prouvons l'unicité globale de ces formes normales. Dans le troisième chapitre, nous étudions l'espace des modules de courbes, qui est l'espace des modules des feuillages à une équivalence analytique des séparatrices associées près. En particulier, nous présentons un algorithme pour calculer sa dimension générique. Le quatrième chapitre présente une autre famille universelle de formes normales analytiques, qui est globalement unique aussi. En effet, il n'ya pas de modèle canonique pour la distribution de l'ensemble des paramètres sur les branches. Ainsi, avec cette famille, nous pouvons voir que la famille précédente n'est pas la seule et qu'il est possible de construire des formes normales en considérant une autre distribution des paramètres. Enfin, pour la globalisation, nous discutons dans le cinquième chapitre une stratégie basée sur la théorie géométrique des invariants et nous expliquons pourquoi elle ne fonctionne pas jusqu'à présent. / Let f be a germ of holomorphic function in two variables which vanishes at the origin. The zero set of this function defines a germ of analytic curve. Although the topological classification of such a germ is well known since the work of Zariski, the analytical classification is still widely open. In 2012, Hefez and Hernandes solved the irreducible case and announced the two components case. In 2015, Genzmer and Paul solved the case of topologically quasi-homogeneous functions. The main purpose of this thesis is to study the first topological class of non quasi-homogeneous functions. In chapter 2, we describe the local moduli space of the foliations in this class and give a universal family of analytic normal forms. In the same chapter, we prove the global uniqueness of these normal forms. In chapter 3, we study the moduli space of curves which is the moduli space of foliations up to the analytic equivalence of the associated separatrices. In particular, we present an algorithm to compute its generic dimension. Chapter 4 presents another universal family of analytic normal forms which is globally unique as well. Indeed, there is no canonical model for the distribution of the set of parameters on the branches. So, with this family, we can see that the previous family is not the only one and that it is possible to construct normal forms by considering another distribution of the parameters. Finally, concerning the globalization, we discuss in chapter 5 a strategy based on geometric invariant theory and explain why it does not work so far.
2

Sobre invariantes topológicos de folheações holomorfas com singularidade isolada / On topological invariants of holomorphic leaflets with isolated singularity

Araujo, Hamilton Regis Menezes de 19 May 2017 (has links)
ARAUJO, H. R. M. Sobre invariantes topológicos de folheações holomorfas com singularidade isolada. 2017. 62 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-25T20:23:00Z No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556971 bytes, checksum: 9f274c4a5c917004f3b67a3fc72c5547 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Conferi a Dissertação de HAMILTON REGIS MENEZES DE ARAUJO, e constatei apenas dois erros na formatação no trabalho que dever ser alterados pelo autor: 1- Epígrafe ( a estrutura desse elemento deve ser a que se segue, com alinhamento à direita: "O sucesso é ir de fracasso em fracasso sem perder o entusiasmo." (Winston Churchill) 2- Títulos das seções (os títulos das seções que se encontram no sumário e ao longo do texto estão incorretos. As normas da ABNT recomendam que apenas a primeira letra do título das seções esteja em maiúscula, com exceção de nomes próprios. Ex.: 2.2 Índice de um Campo em uma Singularidade Isolada deve ser alterado para: 2.2 Índice de um campo em uma singularidade isolada Atenciosamente, on 2017-05-26T16:04:16Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-29T13:43:41Z No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-05-29T14:07:05Z (GMT) No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) / Made available in DSpace on 2017-05-29T14:07:05Z (GMT). No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) Previous issue date: 2017-05-19 / Considering the foliation induced by a complex holomorph vector field, we will look for topological invariants in the neighborhood of a singular point. At first, the Milnor Number of a vector field becomes important, in the sense that this number is topological invariant. In another discussion, we will emphasize vector fields in dimension two, in which case the leaves, whose foliation is induced by the field, will be integral curves of a 1-form. In this sense, we will deal with Desingularization, that is, after a finite number of processes, which we will call Blow-ups or explosions, we will turn the initial foliation into a foliation whose singularities are all simple. Finally, the Desingularization process of a field will give us tools that make it possible to relate the data obtained in this process to the objects treated throughout the work, with this we will present other topological invariants of foliations. / Considerando a folheação induzida por um campo vetorial complexo holomorfo, buscaremos exibir invariantes topológicos na vizinhança de um ponto singular. Num primeiro momento, ganha importância o Número de Milnor de um campo vetorial, no sentido desse número ser invariante topológico. Em outra discussão, daremos ênfase a campos vetoriais em dimensão dois, nesse caso, as folhas, cuja folheação é induzida pelo campo, serão curvas integrais de uma 1-forma. Nesse sentido, trataremos de Desingularização, ou seja, após um número finito de processos, que chamaremos de Blow-ups, ou explosões, transformaremos a folheação inicial em uma folheação cujas singularidades são todas simples. Por fim, o processo de Desingularização de um campo nos dará ferramentas que possibilitam relacionar os dados obtidos nesse processo com os objetos tratados ao longo de todo o trabalho, diante disto apresentaremos outros invariantes topológicos de folheações.
3

[en] COMPLEX ORDINARY DIFFERENTIAL EQUATIONS / [pt] EQUAÇÕES DIFERENCIAIS ORDINÁRIAS COMPLEXAS

GISELA DORNELLES MARINO 25 July 2007 (has links)
[pt] Neste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas. / [en] In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
4

Hipersuperficies generalizadas en Cn / Hipersuperficies generalizadas en Cn

Fernandez Sánchez, Percy, Mozo Fernández, Jorge, Neciosup Puican, Hernán 25 September 2017 (has links)
The main aim of this paper is proof that the reduction of the singularities of a generalized hypersurfaces agrees with a reduction of singularities of its separatrix; which is a generalization of the result presented in [8] by the first two authors. / El objetivo principal de este artículo es demostrar que la reduccióon de singularidades de una hipersupercie generalizada coincide con una reducción de singularidades de su separatriz; el cual es una generalización del resultado presentado en [8] por los dos primeros autores.
5

Folheações e Curvas Estáticas no Plano Projetivo

Mialaret Júnior, Marco Aurélio Tomaz 17 August 2011 (has links)
Made available in DSpace on 2015-05-14T13:21:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 422678 bytes, checksum: a7a607df8d67afa93aa6137919ecb1f5 (MD5) Previous issue date: 2011-08-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The present work discusses a study of extactic curves in the projective plane, providing a method that guarantees the existence of first integrals for certain vector fields. To achieve this goal, this study covers the following topics: vector fields, first integrals (with the main result presented in Jouanolou's Theorem), holomorphic foliations (in particular, foliations on the projective plane) and algebraic solutions (where the main result is the well-known theorem of Darboux, which guarantees the existence of rational first integrals for algebraic foliations on the projective plane). / O presente trabalho aborda um estudo das curvas estáticas no plano projetivo, proporcionando um método que garante a existência de integrais primeiras para certos campos vetorias. Para atingir tal objetivo, o presente estudo abrange os seguintes tópicos: Campos Vetoriais, Integrais Primeiras (tendo como principal resultado apresentado o Teorema de Jouanolou), Folheações Holomorfas (em particular, folheações no plano projetivo) e as Soluções Algébricas (onde o principal resultado é o conhecido teorema de Darboux, que garante a existência de integrais primeiras racionais para folheações algébricas no plano projetivo).
6

Folheações e curvas estáticas no plano projetivo

Mialaret Júnior, Marco Aurélio Tomaz 17 August 2011 (has links)
Made available in DSpace on 2015-05-15T11:46:00Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 422655 bytes, checksum: dcb5ae7d292bcad597f8940738927bd6 (MD5) Previous issue date: 2011-08-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work discusses a study of extactic curves in the projective plane, providing a method that guarantees the existence of -rst integrals for certain vector fields. To achieve this goal, this study covers the following topics: vector fields, first integrals (with the main result presented in Jouanolou's Theorem), holomorphic foliations (in particular, foliations on the projective plane) and algebraic solutions (where the main result is the well-known theorem of Darboux, which guarantees the existence of rational first integrals for algebraic foliations on the projective plane). / O presente trabalho aborda um estudo das curvas estáticas no plano projetivo, proporcionando um método que garante a existência de integrais primeiras para certos campos vetorias. Para atingir tal objetivo, o presente estudo abrange os seguintes tópicos: Campos Vetoriais, Integrais Primeiras (tendo como principal resultado apresentado o Teorema de Jouanolou), Folheações Holomorfas (em particular, folheações no plano projetivo) e as Soluções Algébricas (onde o principal resultado é o conhecido teorema de Darboux, que garante a existência de integrais primeiras racionais para folheações algébricas no plano projetivo).
7

Sobre folheações projetivas sem soluções algébricas

Penao, Giovanna Arelis Baldeón 30 May 2018 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-08-22T18:18:00Z No. of bitstreams: 1 giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-03T16:34:23Z (GMT) No. of bitstreams: 1 giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5) / Made available in DSpace on 2018-09-03T16:34:23Z (GMT). No. of bitstreams: 1 giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5) Previous issue date: 2018-05-30 / O objetivo deste trabalho é estudar um método, apresentado em [6], que nos permite determinar se uma folheação no plano projetivo possui ou não soluções algébricas, usando apenas métodos de computação algébrica. Mais especificamente usando bases de Gröbner. Com este método é possível procurar por outros exemplos de folheações sem soluções algébricas. / The aim of this work is to present a method, given by S. C. Coutinho and Bruno F. M. Ribeiro in [6], to check whether certain holomorphic foliations on the complex projective plane have algebraic solutions, using only methods of algebraic computing or more precisely, using Gröbner bases. This algorithm is then used to produce examples of foliations without algebraic solutions.

Page generated in 0.1139 seconds