Spelling suggestions: "subject:"[een] COMPLEX DYNAMICS"" "subject:"[enn] COMPLEX DYNAMICS""
1 |
Rational maps: the structure of Julia sets from accessible Mandelbrot setsFitzgibbon, Elizabeth Laura 22 January 2016 (has links)
For the family of complex rational maps F_λ(z)=z^n+λ/z^d, where λ is a complex parameter and n, d ≥ 2 are integers, many small copies of the well-known Mandelbrot set are visible in the parameter plane. An infinite number of these are located around the boundary of the connectedness locus and are accessible by parameter rays from the Cantor set locus. Maps taken from main cardioid of these accessbile Mandelbrot sets have attracting periodic cycles. A method for constructing models of the Julia sets corresponding to such maps is described. These models are then used to explore the existence of dynamical conjugacies between maps taken from distinct accessible Mandelbrot sets in the upper halfplane.
|
2 |
Dynamical invariants and parameter space structures for rational mapsCuzzocreo, Daniel L. 22 January 2016 (has links)
For parametrized families of dynamical systems, two major goals are classifying the systems up to topological conjugacy, and understanding the structure of the bifurcation locus. The family Fλ = z^n + λ/z^d gives a 1-parameter, n+d degree family of rational maps of the Riemann sphere, which arise as singular perturbations of the polynomial z^n. This work presents several results related to these goals for the family Fλ, particularly regarding a structure of "necklaces" in the λ parameter plane. This structure consists of infinitely many simple closed curves which surround the origin, and which contain postcritically finite parameters of two types: superstable parameters and escape time Sierpinski parameters. First, we derive a dynamical invariant to distinguish the conjugacy classes among the superstable parameters on a given necklace, and to count the number of conjugacy classes. Second, we prove the existence of a deeper fractal system of "subnecklaces," wherein the escape time Sierpinski parameters on the previously known necklaces are themselves surrounded by infinitely many necklaces.
|
3 |
A Sierpinski Mandelbrot spiral for rational maps of the form Zᴺ + λ / ZᴰChang, Eric 11 December 2018 (has links)
We identify three structures that lie in the parameter plane of the rational map F(z) = zⁿ + λ / zᵈ, for which z is a complex number, λ a complex parameter, n ≥ 4 is even, and d ≥ 3 is odd.
There exists a Sierpindelbrot arc, an infinite sequence of pairs of Mandelbrot sets and Sierpinski holes, that limits to the parameter at the end of the arc.
There exists as well a qualitatively different Sierpindelbrot arc, an infinite sequence of pairs of Mandelbrot sets and Sierpinski holes, that limits to the parameter at the center of the arc.
Furthermore, there exist infinitely many arcs of each type. A parameter can travel along a continuous path from the Cantor set locus, along infinitely many arcs of the first type in a successively smaller region of the parameter plane, while passing through an arc of the second type, to the parameter at the center of the latter arc. This infinite sequence of Sierpindelbrot arcs is a Sierpinski Mandelbrot spiral.
|
4 |
Random Iteration of Rational FunctionsSimmons, David 05 1900 (has links)
It is a theorem of Denker and Urbański that if T:ℂ→ℂ is a rational map of degree at least two and if ϕ:ℂ→ℝ is Hölder continuous and satisfies the “thermodynamic expanding” condition P(T,ϕ) > sup(ϕ), then there exists exactly one equilibrium state μ for T and ϕ, and furthermore (ℂ,T,μ) is metrically exact. We extend these results to the case of a holomorphic random dynamical system on ℂ, using the concepts of relative pressure and relative entropy of such a system, and the variational principle of Bogenschütz. Specifically, if (T,Ω,P,θ) is a holomorphic random dynamical system on ℂ and ϕ:Ω→ ℋα(ℂ) is a Hölder continuous random potential function satisfying one of several sets of technical but reasonable hypotheses, then there exists a unique equilibrium state of (X,P,ϕ) over (Ω,Ρ,θ).
|
5 |
Brjuno Numbers and Complex DynamicsSaenz Maldonado, Edgar Arturo 14 May 2008 (has links)
The Brjuno numbers play a fundamental role in the study of the 1-dimensional Complex Dynamics Theory. In this work we examine the proof of the Brjuno theorem by using elements of Number Theory. We also examine the topological version of the proof given by J. Yoccoz and his renormalization principle.
If α ∈ ℝ\ℚ, we also describe how the existence of a Siegel disk at the origin for the polynomial P(𝑧) = exp(2πiα)·(𝑧 − 𝑧²) implies the linearization of any germ of the form 𝑓(𝑧) = exp(2πiα)·𝑧 + 𝑂(𝑧²). / Master of Science
|
6 |
The Dynamics of Semigroups of Contraction Similarities on the PlaneSilvestri, Stefano 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Given a parametrized family of Iterated Function System (IFS) we give sufficient conditions for a parameter on the boundary of the connectedness locus, M, to be accessible from the complement of M.
Moreover, we provide a few examples of such parameters and describe how they are connected to Misiurewicz parameter in the Mandelbrot set, i.e. the connectedness locus of the quadratic family z^2+c.
|
7 |
[en] COMPLEX ORDINARY DIFFERENTIAL EQUATIONS / [pt] EQUAÇÕES DIFERENCIAIS ORDINÁRIAS COMPLEXASGISELA DORNELLES MARINO 25 July 2007 (has links)
[pt] Neste texto estudamos diversos aspectos de singularidades
de campos vetoriais holomorfos em dimensão 2. Discutimos
detalhadamente o caso particular de uma singularidade
sela-nó e o papel desempenhado pelas normalizações
setoriais. Isto nos conduz à classificação analítica de
difeomorfismos tangentes à identidade. seguir abordamos o
Teorema de Seidenberg, tratando da redução de
singularidades degeneradas em singularidades simples,
através do procedimento de blow-up. Por fim, estudamos a
demonstração do Teorema de Mattei-Moussu, acerca da
existência de integrais primeiras para folheações holomorfas. / [en] In the present text, we study the different aspects of
singularities of holomorphic vector fields in dimension 2.
We discuss in detail the particular case of a saddle-node
singularity and the role of the sectorial normalizations.
This leads us to the analytic classiffication of
diffeomorphisms which are tangent to the identity. Next, we
approach the Seidenberg Theorem, dealing with the reduction
of degenerated singularities into simple ones, by means
of the blow-up procedure. Finally, we study the proof of
the well-known Mattei-Moussu Theorem concerning the
existence of first integrals to holomorphic foliations.
|
8 |
Théorie du contrôle et systèmes hybrides dans un contexte cryptographique / Control theory and hybrid system in a cryptograhical contextVo Tan, Phuoc 12 November 2009 (has links)
La thèse traite de l’utilisation des systèmes hybrides dans le contexte particulier des communications sécurisées et de la cryptographie. Ce travail est motivé par les faits suivants. L’essor considérable des communications qui a marqué ces dernières décennies nécessite des besoins croissants en terme de sécurité des échanges et de protection de l’information. Dans ce contexte, la cryptographie joue un rôle central puisque les informations transitent la plupart du temps au travers de canaux publics. Parmi les nombreuses techniques de chiffrement existants, le chiffrement par flot se distingue tout particulièrement lorsqu’on le débit d’une communication sécurisée est privilégié. Les chiffreurs par flot sont construits à partir de générateurs de séquences complexes décrits par des systèmes dynamiques et devant être synchronisés de part et d’autre du canal d’échanges. Les objectifs et les résultats de ce travail se déclinent en trois points. Tout d’abord, l’intérêt d’utiliser des systèmes hybrides en tant que primitives cryptographiques est motivé. Par la suite, une étude comparative est menée afin d’établir une connexion entre les algorithmes de masquage de l’information basés sur le chaos et les algorithmes de chiffrement usuels. L’étude porte exclusivement sur des considérations structurelles et repose sur des concepts de la théorie du contrôle, en particulier l’inversibilité à gauche et la platitude. On montre que la technique de masquage dite par inclusion, qui consiste à injecter l’information à protéger dans une dynamique complexe, est la plus efficace. De plus, on montre que sous la condition de platitude, un système de masquage par inclusion est structurellement équivalent à un chiffreur par flot particulier appelé auto-synchronisant. Enfin, des méthodes de cryptanalyse pour évaluer la sécurité du masquage par inclusion sont proposées pour une classe particulières de systèmes hybrides à savoir les systèmes linéaires à commutations. A nouveau, des concepts de la théorie du contrôle sont utilisés, il s’agit de l’identifiabilité paramétrique et des algorithmes d’identification. Des spécificités relatives au contexte particulier de la cryptographie sont prises en compte. En effet, contrairement à la plupart des cas rencontrés dans le domaine du contrôle où les variables des modèles dynamiques sont continues car relatives à des systèmes physiques, les variables prennent ici des valeurs discrètes. Les modèles dynamiques sont en effet décrits non plus dans le corps des réels mais dans des corps finis en vue d’une implémentation sur des machines à états finis tels ordinateur ou tout autre dispositif numérique / This manuscript deals with a specific engineering application involving hybrid dynamical systems : secure communications and cryptography. The work is motivated by the following facts. The considerable progress in communication technology during the last decades has led to an increasing need for security in information exchanges. In this context, cryptography plays a major role as information is mostly conveyed through public networks. Among a wide variety of cryptographic techniques, stream ciphers are of special interest for high speed encryption. They are mainly based on generators of complex sequences in the form of dynamical systems, which must be synchronized at the transmitter and receiver sides. The aim of this work is threefold. First, the interest of resorting to hybrid dynamical systems for the design of cryptographic primitives is motivated. Secondly, a connection between chaotic and conventional cryptography is brought out by comparing the respective algorithms proposed in the open literature. The investigation focuses on structural consideration. Control theoretical concepts, in particular left invertibility and flatness, are the central tools to this end. It is shown that the so-called message-embedding technique, consisting in injecting the information to be concealed into a dynamical system, is the most relevant technique. Furthermore, it is shown that, under the flatness condition, the resulting cipher acts as a self-synchronizing stream cipher. Finally, cryptanalytic methodologies for assessing the security of the message-embedded cryptosystem involving a special class of hybrid systems, namely the switched linear systems, are proposed. Again concepts borrowed from control theory, namely identifiability and identification, are considered. Specificities related to the context are taken into account. The variables describing the dynamical systems do not take values in a continuum unlike what usually happens in automatic control when physical models are considered. They rather take values in finite cardinality sets, especially finite fields, since an implementation in finite state machines, say computers or digital electronic devices, is expected
|
9 |
Markov random dynamical systems of rational maps on the Riemann sphere / リーマン球面上の有理写像からなるマルコフ的ランダム力学系Watanabe, Takayuki 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第23273号 / 人博第988号 / 新制||人||234(附属図書館) / 2020||人博||988(吉田南総合図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 角 大輝, 教授 上木 直昌, 准教授 木坂 正史 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
10 |
Dynamics of holomorphic correspondences / Dinâmica de correspondências holomorfasCarlos Alberto Siqueira Lima 22 June 2015 (has links)
We generalize the notions of structural stability and hyperbolicity for the family of (multivalued) complex maps Hc(z) = zr + c; where r > 1 is rational and zr = exp r log z: We discovered that Hc is structurally stable at every hyperbolic parameter satisfying the escaping condition. Surprisingly, there may be infinitely many attracting periodic points for Hc. The set of such points gives rise to the dual Julia set, which is a Cantor set coming from a Conformal Iterated Funcion System. Both the Julia set and its dual are projections of holomorphic motions of dynamical systems (single valued maps) defined on compact subsets of Banach spaces, denoted by Xc and Wc, respectively. For c close to zero: (1) we show that Jc is a union of quasiconformal arcs around the unit circle; (2) the set Xc is an holomorphic motion of the solenoid X0; (3) using the formalism of Gibbs states we exhibit an upper bound for the Hausdorff dimension of Jc; which implies that Jc has zero Lebesgue measure. / Generalizamos as noções de estabilidade estrutural e hiperbolicidade para a família de correspondências holomorfas Hc(z) = zr + c; onde r > 1 é racional e zr = exp r log z: Descobrimos que Hc é estruturalmente estável em todos os parâmetros hiperbólicos satisfazendo a condição de fuga. Tipicamente Hc possui infinitos pontos periódicos atratores, fato totalmente inesperado, uma vez que este número é sempre finito para aplicações racionais. O conjunto de tais pontos dá origem ao chamado conjunto de Julia dual, que é um conjunto de Cantor proveniente de um Conformal Iterated Function System. Tanto o conjunto de Julia e quanto seu dual são projeções de movimentos holomorfos de sistemas definidos em subconjuntos compactos denotados por Xc e Wc; respectivamente de um espaço de Banach. Para todo c próximo de zero: (1) mostramos que Jc é reunião de arcos quase-conformes próximos do círculo unitário; (2) o conjunto Xc é um movimento holomorfo do solenóide X0; (3) utilizando o formalismo dos estados de Gibbs, exibimos um limitante superior para a dimensão de Hausdorff de Jc. Consequentemente, Jc possui medida de Lebesgue nula.
|
Page generated in 0.0335 seconds