• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 25
  • 21
  • 16
  • 11
  • 9
  • 3
  • 3
  • 1
  • Tagged with
  • 393
  • 393
  • 349
  • 79
  • 75
  • 71
  • 64
  • 58
  • 53
  • 52
  • 51
  • 47
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Molecular Beam Scattering from Ultrathin Metallic Films

Steinsiek, Christoph 07 July 2017 (has links)
No description available.
182

Growth, structural and electro-optical properties of GaP/Si and GaAsPN/ GaP single junctions for lattice-matched tandem solar cells on silicon / Croissance et caractérisation des propriétés structurale et optique de couche GaAsPN sur GaP (001) et GaP sur Si (001) pour des applications photovoltaïques

Almosni, Samy 23 February 2015 (has links)
Cette thèse se concentre sur la fabrication de cellule solaire IIIN- V sur substrat de GaP (001) et sur la croissance de couche de GaP sur Si (001). Le but est de réaliser des cellules solaires hautes efficacité sur un substrat à faible coût afin de les intégrer dans des centrales solaire photovoltaïque sous concentration. Les principaux résultats obtenus montrent : - L’importance de l’utilisation d’AlGaP en tant que couche de prénucléation pour annihiler les parois d’antiphase à l’interface GaP/ Si (néfaste pour les propriétés optoélectroniques des dispositifs) - De nombreuses similitude entre la croissance de GaAsN et de GaPN ce qui permet d’élaborer une stratégie afin d’optimiser les propriétés optoélectroniques du GaAsPN - De fortes corrélations entre les propriétés optique et éléctriques dans les nitrures dilués - La réalisation préliminaire d’une cellule solaire monojonction sur GaP ayant un rendement encourageant de 2.25% considérant la faible épaisseur de l’absorbeur dans cette cellule (300 nm) / This thesis focuses on optimizing the heterogeneous growth of IIIN- V solar cells on GaP (001) and GaP nanolayers on Si (001). The goal is to build high efficiency solar cells on low-cost substrate for the realization of concentrated photovoltaic powerplant. The main results shows: - AlGaP as prenucleation layer increase the annihilations of anti-phase boundaries at the GaP/Si interface (harmful for the electronic properties of the devices). - Similarities between the growth of GaAsN and GaPN giving strategies to improve the GaAsPN electrical properties - Clear correlations between the optical and electrical properties of dilute nitride solar cells, giving interesting tools to optimize the growth of those materials using optical measurements. - The realization of a GaAsPN solar cell on GaP with a yield of 2.25%. This results is encouraging given the thin GaAsPN absorber used in this cell
183

MBE Growth and Characterization of Graphene on Well-Defined Cobalt Oxide Surfaces: Graphene Spintronics without Spin Injection

Olanipekun, Opeyemi B 08 1900 (has links)
The direct growth of graphene by scalable methods on magnetic insulators is important for industrial development of graphene-based spintronic devices, and a route towards substrate-induced spin polarization in graphene without spin injection. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction LEED, electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES) demonstrate the growth of Co3O4(111) and CoO(111) to thicknesses greater than 100 Å on Ru(0001) surfaces, by molecular beam epitaxy (MBE). The results obtained show that the formation of the different cobalt oxide phases is O2 partial pressure dependent under same temperature and vacuum conditions and that the films are stoichiometric. Electrical I-V measurement of the Co3O4(111) show characteristic hysteresis indicative of resistive switching and thus suitable for advanced device applications. In addition, the growth of Co0.5Fe0.5O(111) was also achieved by MBE and these films were observed to be OH-stabilized. C MBE yielded azimuthally oriented few layer graphene on the OH-terminated CoO(111), Co0.5Fe0.5O(111) and Co3O4(111). AES confirms the growth of (111)-ordered sp2 C layers. EELS data demonstrate significant graphene-to-oxide charge transfer with Raman spectroscopy showing the formation of a graphene-oxide buffer layer, in excellent agreement with previous theoretical predictions. XPS data show the formation of C-O covalent bonding between the oxide layer and the first monolayer (ML) of C. LEED data reveal that the graphene overlayers on all substrates exhibit C3V. The reduction of graphene symmetry to C3V – correlated with C-O bond formation – enables spin-orbit coupling in graphene. Consequences may include a significant band gap and room temperature spin Hall effect – important for spintronic device applications. The results suggest a general pattern of graphene/graphene oxide growth and symmetry lowering for graphene formation on the (111) surfaces of rocksalt-structured oxides.
184

Vertical Carrier Transport Properties and Device Application of InAs/InAs1-xSbx Type-II Superlattice and a Water-Soluble Lift-Off Technology

January 2020 (has links)
abstract: The first part of this dissertation reports the study of the vertical carrier transport and device application in InAs/InAs1-xSbx strain-balanced type-II superlattice. It is known that the low hole mobility in the InAs/InAs1-xSbx superlattice is considered as the main reason for the low internal quantum efficiency of its mid-wave and long-wave infrared photodetectors, compared with that of its HgCdTe counterparts. Optical measurements using time-resolved photoluminescence and steady-state photoluminescence spectroscopy are implemented to extract the diffusion coefficients and mobilities of holes in the superlattices at various temperatures from 12 K to 210 K. The sample structure consists of a mid-wave infrared superlattice absorber region grown atop a long-wave infrared superlattice probe region. An ambipolar diffusion model is adopted to extract the hole mobility. The results show that the hole mobility first increases from 0.2 cm2/Vs at 12 K and then levels off at ~50 cm2/Vs as the temperature exceeds ~60 K. An InAs/InAs1-xSbx type-II superlattice nBn long-wavelength barrier infrared photodetector has also been demonstrated with a measured dark current density of 9.5×10-4 A/cm2 and a maximum resistance-area product of 563 Ω-cm2 at 77 K under a bias of -0.5 V. The Arrhenius plot of the dark current density reveals a possible high-operating-temperature of 110 K.The second part of the dissertation reports a lift-off technology using a water-soluble sacrificial MgTe layer grown on InSb. This technique enables the seamless integration of materials with lattice constants near 6.5 Å, such as InSb, CdTe, PbTe, HgTe and Sn. Coherently strained MgTe with a lattice constant close to 6.5 Å acts as a sacrificial layer which reacts with water and releases the film above it. Freestanding CdTe/MgxCd1-xTe double-heterostructures resulting from the lift-off process show increased photoluminescence intensity due to enhanced extraction efficiency and photon-recycling effect. The lifted-off thin films show smooth and flat surfaces with 6.7 Å root-mean-square roughness revealed by atomic-force microscopy profiles. The increased photoluminescence intensity also confirms that the CdTe/MgxCd1-xTe double-heterostructures maintain the high optical quality after epitaxial lift-off. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
185

Controlling unconventional superconductivity in artificially engineered heavy-fermion superlattices / 重い電子系人工超格子における非従来型超伝導の制御

Naritsuka, Masahiro 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22238号 / 理博第4552号 / 新制||理||1654(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 松田 祐司, 教授 石田 憲二, 教授 寺嶋 孝仁 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
186

Depozice Ga a GaN nanostruktur na grafenový substrát / Depositon Ga and GaN nanostructures on graphen substrate

Hammerová, Veronika January 2017 (has links)
This diploma thesis is focused on deposition Ga and GaN structures on graphene fabricated by method of mechanical exfoliation. For mechanical exfoliation was used new method with using DGL Gel-Film with kinetically controlled adhesion. Ga is deposited by Molecular beam epitaxy with using eusion cell in UHV conditions. GaN was obtained by post-nitridation of Ga islands. These structures were investigated with optical microscope, SEM, Raman spectroscopy and photoluminiscence.
187

Depozice Ga a GaN nanostruktur na vodíkem modifikovaný grafenový substrát / Deposition of Ga and GaN nanostructures on graphene substrate treated by atomic hydrogen

Bárdy, Stanislav January 2016 (has links)
In this work we studied gallium on graphene. Depositions were done by Molecular beam epitaxy. We observed Raman enhancement and peak shifts by individual Ga islands. Simulation confirmed our assumption, that the enhancement is based on plasmonics effect that is also the main contribution of Surface-enhanced Raman spectroscopy. Another result is hydrogenation of graphene before deposition does have an effect on Ga structure and reduces diffusion length of Ga atoms.
188

Study of the Static and Dynamic Magnetization across the First Order Phase Transition in FeRh Thin Films

Heidarian, Alireza 22 January 2016 (has links)
The equiatomic FeRh alloy undergoes a first-order phase transition from an antiferromagnetic (AFM) to a ferromagnetic (FM) state at about 370 K with a small thermal hysteresis of about 10 K around the phase transition. The transition is accompanied by a unit cell volume expansion about 1% in the c lattice parameter. During the transition the new phase nucleates in the matrix of the original phase by reaching the critical temperature followed by a growth in size upon increasing temperature further. Therefore, to understand the transition process with more details, it is desirable to investigate the nucleation and growth of both phases within the first order phase transition. In the present thesis the main focus is on the growth of FeRh thin films by means of Molecular Beam Epitaxy (MBE) technique and characterization of the magnetic and structural properties. To develop an understanding of the phase transformation in FeRh thin films the ways in which one can tune it were investigated. The following aspects concerning the FeRh system have been examined here: 1) influence of annealing temperature on the magnetic and structural response, 2) effect of film thickness on the first-order phase transition temperature as well as the saturation magnetization, 3) influence of chemical composition on the magnetic properties and 4) magnetic field-induced phase transition. To get insight to details of the transition process the magnetization dynamic has been addressed by performing Ferromagnetic resonance (FMR) experiment across the phase transition. FMR measurements determined the existence of two areas with different magnetic properties inside the film. A huge temperature difference for the beginning of the phase transition in comparison with the static magnetization measurement was observed for the equiatomic FeRh thin film prepared by MBE. Tuning of the AFM to FM phase transition in the FeRh thin film by means of low-energy/low fluence Ne+ ion irradiation was studied. Ion irradiation technique offers a quantitative control of the degree of chemical disorder by adjusting the ion fluence applied, while the penetration depth of the disordered phase can be adjusted by the ion-energy. The main results of ion irradiation are the shifting of the phase transition temperature to lower temperature and irradiation with 3×1014 ion/cm2 leads to the disappearance the AFM phase completely.
189

Superconducting properties of heavy fermion thin films and superlattices / 重い電子系薄膜および人工超格子による超伝導状態の研究

Shimozawa, Masaaki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18052号 / 理博第3930号 / 新制||理||1567(附属図書館) / 30910 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 松田 祐司, 准教授 芝内 孝禎, 教授 石田 憲二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
190

Study on Edge Fluctuation of Supersonic Molecular-Beam Fueled Plasmas Using Langmuir probes and Fast Cameras in Heliotron J / ヘリオトロンJ装置において超音速分子ビーム入射法で給気されたプラズマにおける周辺プラズマ揺動に関する研究

Zang, Linge 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第18385号 / エネ博第297号 / 新制||エネ||61(附属図書館) / 31243 / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 水内 亨, 教授 前川 孝, 教授 佐野 史道 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM

Page generated in 0.0614 seconds