• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estabilidade isomérica e ligações de hidrogênio em agregados e líquidos moleculares / Isomeric stabibility and hydrogen bonds in clusters and molecular liquids

Fileti, Thaciana Valentina Malaspina 09 August 2006 (has links)
Neste trabalho, estamos interessados na descrição da estabilidade isomérica de moléculas isoladas e em agregados, assim como em propriedades eletrônicas de agregados moleculares em fase gasosa e estruturas com ligação de hidrogênio em fase líquida. Na primeira investigação, estabilidade isomérica, estudamos a estabilidade relativa dos isômeros "C IND.2v", "C IND.3v" e "C IND.s" da molécula de "AlP IND.3" isolada. Analisamos tanto a estrutura conformacional, quanto a energética dos três isômeros e depois de submetermos as estruturas mais estáveis a cálculos sofisticados de química quântica, extrapolamos os resultados obtidos para as energias dos isômeros ao limite de base completa. Chegamos µa conclusão que o isômero "C IND.3v" é o menos estável dos três investigados, e que os isômeros "C IND.2v" e "C IND.s" apresentam-se como estados quase-degenerados com uma diferença de energia de 'DA ORDEM DE' 1,6 kcal/mol. Ainda pensando na estabilidade isomérica,investigamos os agregados HCN...HOH e "H IND.2"O...HCN, também em fase gasosa. Através de cálculos ab initio obtivemos a estrutura e energética dos dois agregados. Comparamos a energia dos dois agregados depois de obtermos, através de métodos altamente acurados de correlação eletrônica no limite de base completa, e obtivemos que o agregado "H IND.2"O...HCN é o mais estável por 'DA ORDEM DE'1,5 kcal/mol. Na segunda parte de nosso trabalho, investigamos as modificações sofridas em agregados moleculares quando estes são formados em diferentes ambientes, o gasoso e o líquido. Primeiro, analisamos as diferenças nos agregados de pirazina ("N IND.2" "C IND.4" "H IND.4") e água (1:1 e 1:2), através de comparação da estrutura e propriedades eletrônicas obtidas em fase gasosa através de otimização de geometria e em fase líquida, obtidos da simulação computacional Monte Carlo Metropolis. Para as estruturas 1:1 comparamos os resultados nos dois ambientes através da estrutura, energia e momento de dipolo. Para os agregados 1:2 comparamos adicionalmente as contribuições energéticas de muitos corpos e a cooperatividade nos dois ambientes. Todos os resultados nos mostram que os agregados em fase gasosa são cerca de 30% mais estáveis que os agregados do líquido, tanto para os agregados 1:1 quanto para os agregados 1:2. Ao ¯final do trabalho, analisamos as modificações sofridas no espectro eletrônico do formaldeído ("H IND.2"CO) quando este se encontra em ambiente aquoso. Analisamos especificamente o deslocamento da banda de energia referente à transição n- > "'pi'POT.*" deste espectro quando consideramos 1, 2 e 3 moléculas de água solvatando o formaldeído e também quando incluímos toda a primeira camada de solvatação, 18 moléculas de água, todas inclusas explicitamente no cálculo quântico. Adicionalmente, fizemos estimativas para a contribuição da dispersão de London e da relaxação da ligação C=O no deslocamento da banda n- > "'pi'POT.*" do formaldeído solvatado / In this work, we study the isomeric stability of isolated molecules and molecular clusters. We study the change of some electronic properties of molecular clusters in gas and liquid phases. The first application is the relative isomeric stability of isolated AlP3 in C2v, C3v and Cs symmetries. We analyze the conformational structure and the total energy of the three isomers using sophisticated quantum chemistry calculations and using CCSD(T)/cc-pVXZ (X = 2, 3, 4 and 5) level and extrapole to the infinite basis set limit. The locations of the two states on the potential energy hyper-surface are obtained and show that they represent well-defined and stable isomers. We also investigate the HCN...HOH and H2O...HCN clusters in gas phase, using ab initio calculations to obtain the optimized structure of these two molecular clusters. We present a systematic study of the stability of the H2O...HCN and HCN...HOH complexes calculating the binding energy of both systems using the aug-cc-pVXZ basis sets with X=2,3,4 and extending the results to the infinite limit. At the best theoretical level, CCSD(T), the H2O...HCN cluster is more stable than HCN...HOH by ~ 1.5 kcal/mol. In the second part of our work, we investigate the electronic modifications in molecular clusters due to the different environments of these clusters, the gas and the liquid phases. We analyze the pyrazine-water clusters (1:1 and 1:2) obtained in gas and liquid phases and compare the structure and electronic clusters properties. For the 1:1 pyrazine-water clusters we compare the structures, total energy and dipole moments. For the 1:2 pyrazine-water clusters we analyze the many-body contributions to the interaction energy and cooperativity. All results show that the gas phase clusters have interaction energies that are around 30% of the liquid clusters. Finally, we analyze the absorption electronic spectrum of formaldehyde in liquid water. We specifically analyze the shift of the n-pi* electronic transition. We consider 1, 2, 3 and 18 water molecules solvating the formaldehyde, all explicitaly included in the TD-DFT calculations. Additionally, we make estimates of the London dispersion contribution and C=O stretching effects in the shift of the n-pi* electronic transition of formaldehyde in water.
2

On the stability of sp-valent materials at high pressure

Boates, Brian 19 November 2012 (has links)
The behavior of sp-valent solids and liquids under compression is a field of intense re- search. At high pressure, they often undergo phase transitions to new structures with novel properties such as superconductivity, high-energy density, and superhardness. Furthermore, knowledge of these materials is essential for understanding the structure and evolution of planets. Molecular systems such as nitrogen and carbon dioxide are particularly interesting as energetic materials: their strong molecular bonds break under compression spawning transformations to exotic polymeric phases. We have used first-principles theory and molecular dynamics to make predictions for the properties of dense nitrogen, carbon dioxide, magnesium silicate, and magnesium oxide. For nitrogen, we provide evidence for a rare first-order liquid-liquid phase transition; only the second such transition seen in an elemental fluid. New finite-temperature structure search techniques have been developed and applied to predict a thermodynamically stable polymeric metal phase of solid nitrogen. Regarding carbon dioxide, we have computed its high-pressure liquid phase diagram over a broad pressure-temperature range, revealing rich structural diversity. We have also designed new free energy methods to explore the stability of free CO2 under deep mantle conditions. Lastly, first-principles molecular dynamics and finite-temperature free energy methods were used to predict a high-pressure phase separation transition in liquid MgSiO3 and also characterize the high-pressure phase diagram of MgO, including its melting curve.
3

Estabilidade isomérica e ligações de hidrogênio em agregados e líquidos moleculares / Isomeric stabibility and hydrogen bonds in clusters and molecular liquids

Thaciana Valentina Malaspina Fileti 09 August 2006 (has links)
Neste trabalho, estamos interessados na descrição da estabilidade isomérica de moléculas isoladas e em agregados, assim como em propriedades eletrônicas de agregados moleculares em fase gasosa e estruturas com ligação de hidrogênio em fase líquida. Na primeira investigação, estabilidade isomérica, estudamos a estabilidade relativa dos isômeros "C IND.2v", "C IND.3v" e "C IND.s" da molécula de "AlP IND.3" isolada. Analisamos tanto a estrutura conformacional, quanto a energética dos três isômeros e depois de submetermos as estruturas mais estáveis a cálculos sofisticados de química quântica, extrapolamos os resultados obtidos para as energias dos isômeros ao limite de base completa. Chegamos µa conclusão que o isômero "C IND.3v" é o menos estável dos três investigados, e que os isômeros "C IND.2v" e "C IND.s" apresentam-se como estados quase-degenerados com uma diferença de energia de 'DA ORDEM DE' 1,6 kcal/mol. Ainda pensando na estabilidade isomérica,investigamos os agregados HCN...HOH e "H IND.2"O...HCN, também em fase gasosa. Através de cálculos ab initio obtivemos a estrutura e energética dos dois agregados. Comparamos a energia dos dois agregados depois de obtermos, através de métodos altamente acurados de correlação eletrônica no limite de base completa, e obtivemos que o agregado "H IND.2"O...HCN é o mais estável por 'DA ORDEM DE'1,5 kcal/mol. Na segunda parte de nosso trabalho, investigamos as modificações sofridas em agregados moleculares quando estes são formados em diferentes ambientes, o gasoso e o líquido. Primeiro, analisamos as diferenças nos agregados de pirazina ("N IND.2" "C IND.4" "H IND.4") e água (1:1 e 1:2), através de comparação da estrutura e propriedades eletrônicas obtidas em fase gasosa através de otimização de geometria e em fase líquida, obtidos da simulação computacional Monte Carlo Metropolis. Para as estruturas 1:1 comparamos os resultados nos dois ambientes através da estrutura, energia e momento de dipolo. Para os agregados 1:2 comparamos adicionalmente as contribuições energéticas de muitos corpos e a cooperatividade nos dois ambientes. Todos os resultados nos mostram que os agregados em fase gasosa são cerca de 30% mais estáveis que os agregados do líquido, tanto para os agregados 1:1 quanto para os agregados 1:2. Ao ¯final do trabalho, analisamos as modificações sofridas no espectro eletrônico do formaldeído ("H IND.2"CO) quando este se encontra em ambiente aquoso. Analisamos especificamente o deslocamento da banda de energia referente à transição n- > "'pi'POT.*" deste espectro quando consideramos 1, 2 e 3 moléculas de água solvatando o formaldeído e também quando incluímos toda a primeira camada de solvatação, 18 moléculas de água, todas inclusas explicitamente no cálculo quântico. Adicionalmente, fizemos estimativas para a contribuição da dispersão de London e da relaxação da ligação C=O no deslocamento da banda n- > "'pi'POT.*" do formaldeído solvatado / In this work, we study the isomeric stability of isolated molecules and molecular clusters. We study the change of some electronic properties of molecular clusters in gas and liquid phases. The first application is the relative isomeric stability of isolated AlP3 in C2v, C3v and Cs symmetries. We analyze the conformational structure and the total energy of the three isomers using sophisticated quantum chemistry calculations and using CCSD(T)/cc-pVXZ (X = 2, 3, 4 and 5) level and extrapole to the infinite basis set limit. The locations of the two states on the potential energy hyper-surface are obtained and show that they represent well-defined and stable isomers. We also investigate the HCN...HOH and H2O...HCN clusters in gas phase, using ab initio calculations to obtain the optimized structure of these two molecular clusters. We present a systematic study of the stability of the H2O...HCN and HCN...HOH complexes calculating the binding energy of both systems using the aug-cc-pVXZ basis sets with X=2,3,4 and extending the results to the infinite limit. At the best theoretical level, CCSD(T), the H2O...HCN cluster is more stable than HCN...HOH by ~ 1.5 kcal/mol. In the second part of our work, we investigate the electronic modifications in molecular clusters due to the different environments of these clusters, the gas and the liquid phases. We analyze the pyrazine-water clusters (1:1 and 1:2) obtained in gas and liquid phases and compare the structure and electronic clusters properties. For the 1:1 pyrazine-water clusters we compare the structures, total energy and dipole moments. For the 1:2 pyrazine-water clusters we analyze the many-body contributions to the interaction energy and cooperativity. All results show that the gas phase clusters have interaction energies that are around 30% of the liquid clusters. Finally, we analyze the absorption electronic spectrum of formaldehyde in liquid water. We specifically analyze the shift of the n-pi* electronic transition. We consider 1, 2, 3 and 18 water molecules solvating the formaldehyde, all explicitaly included in the TD-DFT calculations. Additionally, we make estimates of the London dispersion contribution and C=O stretching effects in the shift of the n-pi* electronic transition of formaldehyde in water.
4

Theoretical Studies of Chemical Processes in Multi-Component Solution Systems Based on Integral Equation Theory for Molecular Liquids / 分子性液体の積分方程式理論による多成分溶液内の化学過程に関する理論的研究

Kido, Kentaro 23 May 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17065号 / 工博第3614号 / 新制||工||1548(附属図書館) / 29785 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 佐藤 啓文, 教授 白川 昌宏, 教授 山本 量一 / 学位規則第4条第1項該当
5

Extensions Of Mode Coupling Theory To Study Diffusion And Viscosity And Applications To Chemical Dynamics

Bhattacharyya, Sarika 08 1900 (has links) (PDF)
No description available.
6

Ultraschnelle Dynamik in Flüssigkeiten

Laurent, Thomas 23 October 2000 (has links)
Die vorliegende Arbeit untersucht ultraschnelle Rotations- und Translationsbewegungen in molekularen Flüssigkeiten. Dazu wurde deren Optischer Kerr-Effekt/Raman-Induzierter Kerr-Effekt (OKE/RIKE) zeitaufgelöst mithilfe der Pump/Probetechnik gemessen. Die erzielte Zeitauflösung betrug 30 fs. Langzeitschwankungen des Signals konnten zusätzlich mit einer Echtzeit-Meßtechnik eliminiert werden. In der transienten Doppelbrechung wurde so ein Signal/Rausch Verhältnis von 10^7 erreicht. Das Ziel war eine möglichst genaue Beschreibung der Responsfunktion für den Optischen Kerr-Effekt der Flüssigkeiten Chloroform, Acetonitril, Trichloracetonitril, Tetrachlorkohlenstoff, Methylchloroform und Fluoroform. Die Fourier-Transformation dieser Responsfunktion entspricht dem depolarisierten Raman Spektrum der Flüssigkeit. Die Responsfunktion wurde auf zwei Wegen aus dem gemessenen OKE Signal erhalten: a) in der Zeitdomäne durch Anpassung empirisch gewählter Terme und b) in der Frequenzdomäne durch Anpassung von Brownschen Oszillatormoden. Die Analyse bezieht den gesamten Datenumfang ein, ohne numerisch problematische Entfaltungsverfahren nutzen zu müssen. In den untersuchten Systemen erfolgt die elektronische Antwort instantan auf den anregenden Laserimpuls. Innerhalb der ersten halben Pikosekunde beobachtet man eine intermolekulare Dynamik, die auf Librationen und kollisionsinduzierte Translationsbewegungen zurückgeht. Diese nur schwer unterscheidbare Dynamik verschwindet typischerweise mit Zeitkonstanten bis 250 fs. Die Langzeitrelaxation in den isotropen Zustand wird der diffusiven Reorientierung zugeordnet. Es werden hierfür Zeitkonstanten tau zwischen 1.2 (Methylchloroform) und 3 ps (Chloroform) beobachtet. Durch die hohe Bandbreite des Laserimpulses werden außerdem niederfrequente Raman-Linien (bis ca. 750 cm^-1) angeregt. Diese äußern sich durch untergedämpfte Signaloszillationen (RIKE). Erstmals wird der OKE von flüssigem Fluoroform untersucht. Aufgrund seiner Eigenschaften kommt CHF3 der Modellvorstellung einer polaren harten Kugel sehr nahe. Das beobachtete Signal ist ca. 110 mal schwächer als in Chloroform. Die diffusive Reorientierung verläuft auß erdem deutlich schneller (tau = 0.8 ps). Der (intermolekulare) OKE wächst nun mit steigender Polarisierbarkeitsanisotropie, während der (intramolekulare) RIKE von der änderung der Polarisierbarkeitsanisotropie mit der Schwingungskoordinate des Moleküls abhängt. Durch vergleichende Messungen mit isotropen Tetrachlorkohlenstoff kann auch prinzipiell der Einfluß der kollisionsinduzierten Effekte (CI) in den untersuchten Flüssigkeiten abgeschätzt werden. Rotations- und Translationsbewegungen korrelieren allerdings miteinander. Die daraus resultierenden Kreuzterme sind dann aus den Responsfunktionen allein nicht mehr zu ermitteln. Sie sind nur aus weiterführenden moleküldynamischen Simulationen erhältlich. Für Acetonitril wird eine übereinstimmung zwischen experimenteller und theoretisch vorhergesagter OKE Responsfunktion gefunden. Die OKE Responsfunktionen sind mit den Relaxationsfunktionen der dielektrischen Relaxation und der Solvatation von polaren Sondenmolekülen verknüpft. Die Messungen des zeitaufgelösten Optischen Kerr-Effektes sollen hier künftig dazu dienen, die reinen Flüssigkeitsbeiträge zur polaren und nichtpolaren Solvatation zu erkennen. / Within this work the ultrafast rotational and translational motions of molecular liquids are investigated. Therefore their Optical Kerr effect/Raman induced Kerr effect (OKE/RIKE) was measured time-resolved with the pump/probe technique. Achieved time resolution was 30 fs. Long-time fluctuations of the signal might be eliminated by an additional realtime measurement technique. Hence a signal/noise ratio of ca. 10^7 in the transient birefringence was obtained. A detailed description of the response function derived from Optical Kerr effect was targeted for the liquids chloroform, acetonitrile, trichloroacetonitrile, carbon tetrachloride, 1,1,1-trichloroethane and fluoroform. The Fourier-Transformation of the response functions of the liquids is eqivalent to their depolarized Raman spectra. The response function is obtained from measured signals in two ways: a) by fitting empirical terms in time domain and b) fitting Brownian oscillator modes in frequency domain. Analysis includes complete data range without using numerical deconvolution techniques. In all investigated systems an electronical response follows to the stimulating laser pulse instantaneously. Within the first half pico second one observes intermolecular dynamics due to librational and collision-induced translational motions. These (hard to distinguish) dynamics disappear with typical time-constants of up to 250 fs. The long-time relaxation into an isotropic distribution of molecules is termed diffusive reorientation. Here time-constants tau between 1.2 (CCl3CH3) and 3 ps (CHCl3) are observed. Additionally low-frequent Raman lines (up to 750 cm^-1) may be stimulated due to the high pulse bandwidth, resulting in underdamped signal oscillations (RIKE). The OKE of liquid fluoroform is investigated for the first time. It comes closest to the Mean Spherical Approximation model for a fluid composed of polar, nonpolarizable hard spheres. The observed signal is ca. 110 times weaker than in chloroform. The diffusional reorientation occurs also faster (tau = 0.8 ps). Generally (intermolecular) OKE rises with growing polarizability anisotropy, while (intramolecular) RIKE depends from the change of polarizability anisotropy with the vibrational coordinate. Influence of collision-induced effects (CI) is derived in principle from compared measurements in isotropic carbon tetrachloride. However a correlation exists between rotational and translational motion. Resulting cross-terms cannot be obtained from response functions alone. These are only available in molecular-dynamic simulations in literature. In acetonitril one finds similar response functions derived from OKE measurements and predicted theoretical simulation. The OKE respons functions are related to relaxation functions of the dielectrical relaxation and the solvation of polar molecules. Time-resolved measurements of the OKE reveal here contributions of the pure liquid in polar and nonpolar solvation.
7

Theoretical And Computer Simulation Studies Of Vibrational Phase Relaxation In Molecular Liquids

Roychowdhury, Swapan 03 1900 (has links)
In this thesis, theoretical and computer simulation studies of vibrational phase relaxation in various molecular liquids are presented. That includes liquid nitrogen, both along the coexistence line and the critical isochore, binary liquid mixture and liquid water. The focus of the thesis is to understand the dependence of the vibrational relaxation on the density, temperature, composition and the role of different interactions among the molecules. The density fluctuation of the solute particles in a solvent is studied systematically, where the computer simulation results are compared with the mode coupling theory (MCT). The classical density functional theory (DFT) is used to study the vibrational relaxation dynamics in molecular liquids with an aim to understand the heterogeneous nature of the dynamics commonly observed in experiments. Chapter 1 contains a brief overview of the earlier relevant theories, their successes and shortcomings in the light of the problems discussed in this thesis. This chapter discusses mainly the basic features of the vibrational dynamics of molecular liquids and portrays some of the theoretical frameworks and formalisms which are widely recognized to have contributed to our present understanding. Vibrational dephasing of nitrogen molecules is known to show highly interesting anomalies near its gas–liquid critical point. In Chapter 2, we present the results of extensive computer simulation studies and theoretical analysis of the vibrational phase relaxation of nitrogen molecules both along the critical isochore and the gas–liquid coexistence line. The simulation includes the different contributions (density (ρ), vibration–rotation (VR), and resonant transfer (Rs)) and their cross–correlations. Following Everitt and Skinner, we have included the vibrational coordinate (q) dependence of the inter–atomic potential, which is found to have an important contribution. The simulated results are in good agreement with the experiments. The linewidth (directly proportional to the rate of the vibrational phase relaxation) is found to have a lambda shaped temperature dependence near the critical point. As observed in the experimental studies, the calculated lineshape becomes Gaussian–like as the critical temperature (Tc) is approached while being Lorentzian–like at the temperatures away from Tc. Both the present simulation and a mode coupling theory (MCT) analysis show that the slow decay of the enhanced density fluctuations near the critical point (CP), probed at the sub–picosecond timescales by the vibrational frequency modulation, and an enhanced vibration–rotation coupling, are the main causes of the observed anomalies. Dephasing time (тv) and the root mean square frequency fluctuation (Δ) in the supercritical region are calculated. The principal results are: 1. a crossover from a Lorentzian–like to a Gaussian–like lineshape is observed as the critical point is approached along the critical isochore, 2. the root mean square frequency fluctuation shows a non–monotonic dependence on the temperature along the critical isochore, 3. the temperature dependent linewidth shows a divergence–like (λ–shaped) behavior along the coexistence line and the critical isochore. It is found that the linewidth calculated from the time integral of the normal coordinate time correlation function (CQ(t)) is in good agreement with the known experimental results. The origin of the anomalous temperature dependence of linewidth can be traced to simultaneous effects of several factors, (i) the enhancement of the negative cross–correlations of ρ with VR and Rs and (ii) the large density fluctuations as the critical point (CP) is approached. Due to the negative cross–correlations of ρ with VR and Rs the total decay becomes faster (correlation times are in the femtosecond scale). The reason for the negative cross–correlation between ρ and VR is explored in detail. A mode coupling theory (MCT) analysis shows a slow decay of the enhanced density fluctuations near the critical point. The MCT analysis demonstrates that the large enhancement of VR–coupling near CP may arise from a non–Gaussian behavior of the equilibrium density fluctuations. This enters through a non–zero value of the triplet direct correlation function. Many of the complex systems found in nature and used routinely in industry are multi–component systems. In particular, binary mixtures are highly non–ideal and play an important role in the industry. The dynamic properties are strongly influenced by composition fluctuations which are absent in the one component liquids. In Chapter 3, isothermal–isobaric (NPT) ensemble molecular dynamics simulation studies of vibrational phase relaxation (VPR) in a model system are presented. The model considers strong attractive interaction between the dissimilar species to prevent phase separation. The model reproduces the experimentally observed non–monotonic, nearly symmetric, composition dependence of the dephasing rate. In addition, several other experimentally observed features, such as the maximum of the frequency modulation correlation time (т c) at a mole fraction near 0.5 and the maximum rate enhancement by a factor of about 3 above the pure component value, are also reproduced. The product of the mean square frequency modulation ((Δω2(0))) with тc indicates that the present model is in the intermediate regime of the inhomogeneous broadening. The non–monotonic composition (χ) dependence of тv is found to be primarily due to the non–monotonic χ dependence of тc, rather than due to a similar dependence in the amplitude of (Δω2(0)). The probability distribution of Δω shows a markedly non–Gaussian behavior at intermediate composition (χ - 0.5). We have also calculated the composition dependence of the viscosity (η∗) in order to explore the correlation between the viscosity with that of тv and тc. It is found that both the correlation times essentially follow the nature of the composition dependence of the viscosity. A mode coupling theory (MCT) analysis is presented to include the effects of the composition fluctuations in binary mixture. Water is an interesting and attractive object for research, not only because of its great importance in life processes but also due to its unusual and intriguing properties. Most of the anomalous properties of water are related to the presence of a three–dimensional network of hydrogen bonds, which is constantly changing at ultrafast, sub–picosecond timescales. Vibrational spectroscopy provides the means to study the dynamics of processes involving only certain chemical bonds. The dynamics of hydrogen bonding can be probed via its reflection on molecular vibrations, e.g., the stretching vibrational mode of the O–H bond. Recently developed femtosecond infrared vibrational spectroscopy has proved to be valuable to study water dynamics because of its unique temporal resolution. Recent studies have shown that the vibrational relaxation of the O–H stretch of HDO occurs at an extremely fast timescale with time constant being less than 100 femtosecond. Here, in Chapter 4, we investigate the origin of this ultrafast vibrational dephasing using computer simulation and appropriate theoretical analysis. In addition to the usual fast vibrational dynamics due to the hydrogen bonding excitations, we find two additional reasons: (a) the large amplitude of angular jumps of the water molecules (with 30–40 fs time intervals) provide large contribution to the mean square vibrational frequency and (b) the projected force along the O–H bond due to the solvent molecules, on the oxygen (FO(t)) and hydrogen (FH (t)) atoms of the O–H bond exhibit a large negative cross–correlation (NCC) between FO(t) and FH (t). This NCC is shown to be partly responsible for a weak, non–Arrhenius temperature dependence of the relaxation rate. In the concluding note, Chapter 5 starts with a brief summary of the outcome of this thesis and ends up with suggestions of a few relevant problems that may prove worthwhile to be addressed in the future.

Page generated in 0.0417 seconds