• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 33
  • 10
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 203
  • 203
  • 74
  • 44
  • 35
  • 35
  • 29
  • 25
  • 17
  • 17
  • 16
  • 16
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

TRANSMISSION ELECTRON MICROSCOPY AND FLOW FIELD-FLOW FRACTIONATION: EXPLORATION OF THE NANOSCOPIC COMPONENTS IN PARTIALLY REDUCED POLYOXOMOLYBDATES BY KINETIC PRECIPITATION WITH DE NOVO ORGANIC MOLECULES

Zhu, Yan 01 January 2003 (has links)
Although molybdenum blue solutions have been known for more than twocenturies, an understanding of their chemical nature is only beginning to emerge.This dissertation aimed at elucidating the structural nature of the polydisperse,nanoscopic components in the solution phases and the solid states of partiallyreduced polyoxomolybdate (Mo-POM). The study offered at least fourcontributions to the area: (1) a rational protocol for the molecular recognition ofMo-POM with de novo organic hosts. (2) demonstration of kinetic precipitation ofa dynamic mixture of polyoxomolybdates and application of the technique to thestudy of the dynamic mixture by TEM (3) characterization of the Mo-POMnanostructures by an unusual combination of complementary analyticaltechniques. (4) a general approach for the synthesis of crown-ethers-containingtripodal molecules.The molecular recognition of Mo-POM with designer tripodal hexaminetris-crown ethers opened a window to the solution phase structures of Mo-POMnanoscopic components. Studies with a series of structurally analogous hostsprobed the relationship between the structure of the molecular host and theformation of nanostructures.An unusual combination of complementary analytical protocols: flow fieldflowfractionation, electron microscopy (transmission and scanning), andinductively coupled plasma – emission spectroscopy, was used to monitor thesolution-phase evolution of Mo-POM nanostructures. The crystallization – drivenformation of keplerate Mo-POM and solution-phase evolution of structurallyrelated nanoscopic species were apparent in the self-assembling process ofpartially reduced Mo-POM.
72

Molecularly imprinted solid phase extraction - pulsed elution and capillary electrophoresis for rapid screening of metformin in human plasma /

Feng, Sherry Yu, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2005. / Includes bibliographical references (p. 85-91). Also available in electronic format on the Internet.
73

Experimental contributions to the theory and application of molecular recognition

Hughes, Andrew Dike, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
74

Evolving complex systems from simple molecules /

Sadownik, Jan. January 2009 (has links)
Thesis (Ph.D.) - University of St Andrews, May 2009. / Restricted until 29th May 2010.
75

Bead based microreactors for sensing applications

Wong, Jorge, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
76

Configurationally imprinted biomimetic polymers with specific recognition for oligopeptides

Lauten, Elizabeth Hunter, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
77

Dyes and indicators in molecular sensing ensembles progress toward novel uses of dendrimers and reactands in optical sensing methods /

Rainwater, John Chance, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
78

Dynamic combinatorial synthesis of donor-acceptor catenanes

Cougnon, Fabien B. L. January 2012 (has links)
Dynamic combinatorial chemistry (DCC) is a powerful method for synthesising complex molecules and identifying unexpected receptors. Chapter 1 gives an overview of the concept of DCC and its applications, and discusses its evolution to date. Chapter 2 describes the discovery of a new generation of donor-acceptor [2]catenanes in aqueous dynamic combinatorial systems. The assembly of these [2]catenanes is promoted by a high salt concentration (1 M NaNO3), which raises the ionic strength and encourages hydrophobic association. More importantly, a mechanism that explains and predicts the structures formed is proposed, giving a fundamental insight into the role played by hydrophobic effect and donor-acceptor interactions in this process. Building on these results, Chapter 3 describes the assembly in high salt aqueous libraries of a larger structure: a [3]catenane. Remarkably, the [3]catenane exhibits strong binding interactions with a biologically relevant target - spermine - in water under near-physiological conditions. Its synthesis is improved if the salt is replaced by a sub-mM concentration of spermine, acting as a template. Chapter 4 explores in further detail how subtle variations in the building block design influence the selective formation of either [2] or [3]catenanes. This last section underlines both the advantages and the limitations of the method developed in Chapter 3. After a short conclusion (Chapter 5), Chapter 6 gives experimental details.
79

Boronate-diol interactions in membranes : a biomimetic tool for polysaccharide recognition

Brown, James Robert David January 2013 (has links)
Molecular recognition at biomembranes is one of the more poorly understood aspects of fundamental research in physical organic chemistry. Our aim was to improve our understanding of the molecular recognition of polysaccharides at biomembranes, in particular developing synthetic lipids that will recognise and report on the presence of glycosaminoglycans (GAG polysaccharides), like heparin and hyaluronic acid. Elevated levels of hyaluronic acid have been implicated in bladder carcinoma and osteoarthritis, and the use of heparin for medical applications is well documented. We synthesised a boronic acid capped lipid that also bore a fluorinated fluorescent reporter group, which could report on multivalent recognition events at bilayer membranes by fluorescent quenching and changes in the lateral distribution of the reporter groups. These preliminary studies showed these boronic acid capped fluorinated lipids gave a fluorescent signal upon interaction with simple mono- and poly- saccharides, albeit with unexpectedly weak binding to these saccharides. To understand and quantify the weaker binding of saccharides to membrane bound boronic acids a series of novel fluorescent and chromogenic lipids were synthesised that bore the reporter group close to the boronic acid. These studies revealed several underlying factors that had important roles in the recognition of oligosaccharides by boronic acid capped lipids. For the first time the effect of the bilayer on saccharide/boronic acid recognition was quantified, with the membrane weakening the interaction 33-fold. We were able to propose a model for the interaction of saccharides for membrane bound boronic acids that explained many of these unexpected observations.We also devised a parallel approach using GAGs to open or close synthetic membrane channels. Using a GAG to switch on the release of an ion or dye would generate a fluorescent signal that amplifies the original recognition event and improves sensitivity for GAGs. Proof-of-principle studies using palladium ions to open dye-transporting channels were successful and these studies were followed by the synthesis of boronic acid-capped cholates. Incorporation of boronic acid-capped cholates into membranes caused changes in the rate of release of alkali metal ions, which caused an enclosed fluorescent dye to give a signal, in the presence or absence of saccharides. These compounds successfully gave a response to the simple saccharide D-fructose but gave no response to other saccharides tested, including various hyaluronic acids. Although we were not able to develop a selective sensor for GAGs, we have developed a model for saccharide/boronic acid interactions that is a valuable addition to the physical organic chemistry of membranes.
80

Structure-based computational studies of protein-ligand interactions

Wang, Bo 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Molecular recognition plays an important role in biological systems. The purpose of this study was to get a better understanding of the process by incorporating computational tools.Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) method, the end-point free energy calculations provide the binding free energy the can be used to rank-order protein–ligand structures in virtual screening for compound or target identification. Free energy calculations were performed on a diverse set of 11 proteins bound to 14 small molecules was carried out for. A direct comparison was taken between the calculated free energy and the experimental isothermal titration calorimetry (ITC) data. Four and three systems in MM-GBSA and MM-PBSA calculations, respectively, reproduced the ITC free energy within 1 kcal•mol–1. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). The rank-ordering performance of MM-PBSA improved with increasing ε (ρ = 0.91 for ε = 10), but the contributions of electrostatics became significantly lower at larger ε level, suggesting that the only nonpolar and entropy components contribute to the improved results. Our previously developed scoring function, Support Vector Regression Knowledge-Based (SVRKB), resulted in excellent rank-ordering (ρ = 0.81) when applied into MD simulations. Filtering MD snapshots by prescoring protein–ligand complexes with a machine learning-based approach (SVMSP) resulted in a significant improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally, the nonpolar components in the free energy calculations showed strong correlation to the ITC free energy while the electrostatic components did not; the computed entropies did not correlate with the ITC entropy. Explicit-solvent molecular dynamics (MD) simulations offer an opportunity to sample multiple conformational states of a protein-ligand system in molecular recognition. SVMSP is a target-specific rescoring method that combines machine learning with statistical potentials. We evaluate the performance of SVMSP in its ability to enrich chemical libraries docked to MD structures. Seven proteins from the Directory of Useful Decoys (DUD) were involved in the study. We followed an innovative approach by training SVMSP scoring models using MD structures (SVMSPMD). The resulting models remarkably improved enrichment in two cases. We also explored approaches for a prior identification of MD snapshots with high enrichment power from an MD simulation in the absence of active compounds. SVMSP rescoring of protein–compound MD structures was applied for the search of small-molecule inhibitors of the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2). Rank-ordering of a commercial library of 50,000 compounds docked to MD optimized structures of ALDH2 led to five small-molecule inhibitors. Four compounds had IC50s below 5 μM. These compounds serve as leads for the design and synthesis of more potent and selective ALDH2 inhibitors.

Page generated in 0.1071 seconds