Spelling suggestions: "subject:"7molecular arecognition feature"" "subject:"7molecular arecognition eature""
1 |
Proteus : A new predictor for protean segmentsSöderquist, Fredrik January 2015 (has links)
The discovery of intrinsically disordered proteins has led to a paradigm shift in protein science. Many disordered proteins have regions that can transform from a disordered state to an ordered. Those regions are called protean segments. Many intrinsically disordered proteins are involved in diseases, including Alzheimer's disease, Parkinson's disease and Down's syndrome, which makes them prime targets for medical research. As protean segments often are the functional part of the proteins, it is of great importance to identify those regions. This report presents Proteus, a new predictor for protean segments. The predictor uses Random Forest (a decision tree ensemble classifier) and is trained on features derived from amino acid sequence and conservation data. Proteus compares favourably to state of the art predictors and performs better than the competition on all four metrics: precision, recall, F1 and MCC. The report also looks at the differences between protean and non-protean regions and how they differ between the two datasets that were used to train the predictor.
|
2 |
Structure et dynamique de protéines intrinsèquement désordonnées : Caractérisation par une approche combinant dynamique moléculaire avancée et SAXS / Structure and dynamic of intrinsically disordered proteins : Characterization by an approach combining advanced molecular dynamics and small angle Xray scattering (SAXS)Chan Yao Chong, Maud 15 October 2019 (has links)
Le travail de thèse consistera à explorer et caractériser l'ensemble conformationnel de protéines intrinsèquement désordonnées (IDPs) en utilisant plusieurs techniques complémentaires, notamment des simulations avancées de dynamique moléculaire et la diffusion des rayons X aux petits angles (SAXS). Les IDPs sont des protéines possédant une ou plusieurs régions n'ayant pas de structures secondaires stables lorsqu'elles sont isolées, mais pouvant en adopter lors de leur association avec de multiples autres protéines. La question, à laquelle ce travail souhaite répondre dans le cas de trois IDPs, est de savoir si ces éléments de structures secondaires, formés à l'interfaces des complexes protéine-protéine, pré-existent de façon transitoire, ou non, à l'état non-lié des IDPs en solution. S'il est possible d'identifier et de caractériser ces éléments de reconnaissance moléculaire dans les IDPs isolées, alors les résultats de ce travail permettront de guider par la suite la détermination des structures de complexes protéiques impliquant des IDPs. / The PhD work will consist in exploring and characterizing the conformational ensemble of intrinsically disordered proteins (IDPs), by using several complementary methods, including enhanced molecular dynamics simulations and small angle X-ray scattering (SAXS). IDPs are proteins having one or several regions that lack stable secondary structures in the unbound state, but which can adopt various structured conformations to bind other proteins. In the case of three IDPs, the project aims to answer the question of whether these secondary structures formed at the protein-protein interfaces transiently pre-exist or not in the unbound state of solvated IDPs. If it is possible to identify and characterize these molecular recognition features (MoRFs) in the IDP unbound state, then the results of this work will subsequently help to determine the structures of protein complexes involving IDPs.
|
3 |
Mechanisms of binding diversity in protein disorder : molecular recognition features mediating protein interaction networksHsu, Wei-Lun 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intrinsically disordered proteins are proteins characterized by lack of stable tertiary structures under physiological conditions. Evidence shows that disordered proteins are not only highly involved in protein interactions, but also have the capability to associate with more than one partner. Short disordered protein fragments, called “molecular recognition features” (MoRFs), were hypothesized to facilitate the binding diversity of highly-connected proteins termed “hubs”. MoRFs often couple folding with binding while forming interaction complexes. Two protein disorder mechanisms were proposed to facilitate multiple partner binding and enable hub proteins to bind to multiple partners: 1. One region of disorder could bind to many different partners (one-to-many binding), so the hub protein itself uses disorder for multiple partner binding; and 2. Many different regions of disorder could bind to a single partner (many-to-one binding), so the hub protein is structured but binds to many disordered partners via interaction with disorder. Thousands of MoRF-partner protein complexes were collected from Protein Data Bank in this study, including 321 one-to-many binding examples and 514 many-to-one binding examples. The conformational flexibility of MoRFs was observed at atomic resolution to help the MoRFs to adapt themselves to various binding surfaces of partners or to enable different MoRFs with non-identical sequences to associate with one specific binding pocket. Strikingly, in one-to-many binding, post-translational modification, alternative splicing and partner topology were revealed to play key roles for partner selection of these fuzzy complexes. On the other hand, three distinct binding profiles were identified in the collected many-to-one dataset: similar, intersecting and independent. For the similar binding profile, the distinct MoRFs interact with almost identical binding sites on the same partner. The MoRFs can also interact with a partially the same but partially different binding site, giving the intersecting binding profile. Finally, the MoRFs can interact with completely different binding sites, thus giving the independent binding profile. In conclusion, we suggest that protein disorder with post-translational modifications and alternative splicing are all working together to rewire the protein interaction networks.
|
Page generated in 0.1098 seconds