• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing the Role of Cysteine Protease 2 in Trichomonas Vaginalis

Balayan, Shaina-Jill S. 01 January 2015 (has links) (PDF)
Trichomonas vaginalis is a human urogenital parasite and the causal agent of trichomoniasis, the most common non-viral, sexually transmitted disease in the United States. Much of the pathogenic properties of T. Vaginalis stem from cysteine proteases. Here, we present the results of several studies on one variant, TvCP2, including purification and characterization of its active form, gene regulation in response to iron and oxygen, and localization and trafficking. Homologous to human Cathepsin L, TvCP2 was hypothesized to function as a protease, presumably localize to lysosomes, and play a role in T. vaginalis pathogenesis that is distinct from TvCP4. Levels of bacterially-expressed TvCP2 decreased faster in activation assays of lower pH. In Pichia pastoris, the amounts and form of TvCP2 expressed were variable, and protease activity was influenced by reducing agent and pH. Post-translational modifications may be in effect, or TvCP2 may be autocatalytic, however, actual autocatalytic processing remains to be determined. Consistent with previous reports, and contrary to TvCP4 regulation, TvCP2 mRNA levels were increased in T. vaginalis grown in media with reduced iron supplementation. Expression of processed TvCP2 protein increased, demonstrating post-transcriptional regulation and the potential for iron to influence processing of and/or proper sorting of TvCP2. Also, unlike TvCP4 expresion, which is unaffected by oxygen, both TvCP2 protein and mRNA were greatest under anaerobic conditions, suggestion transcriptional and translational regulation by oxygen, and that upon initial infection TvCP2 is not required immediately. Although overall immunofluorescent staining patterns were different between TvCP2 and TvCP4, hinting at distinct functions, both localized bto punctate vesicles, for which some colocalization was observed. Additionally, unlike TvCP4, TvCP2 did not colocalize with Vamp1/2 and did colocalize with legumain. These data suggest that TvCP2 is intracellular, targeted to lysosomes, and sorted independently from TvCP4. In conclusion, TvCP2 may play a unique role in the cell and is important for the life cycle and pathogenesis of T. vaginalis.
2

O papel de ATRAP (AT1R associated protein) na modulação de NHE3 mediada por angiotensina II. / ATRAP (AT1R associated protein) role on modulation of angiotensin II-mediated NHE3 activity.

Polidoro, Juliano Zequini 15 September 2014 (has links)
Os experimentos indicam, como já demonstrado em estudos prévios do laboratório, que angiotensina II (Ang II) apresenta efeito estimulatório sobre a cinética de recuperação de pHi em células OKP. Tal estímulo não é acentuado pela super-expressão de AT1aR recombinante, ao contrário do que imaginávamos inicialmente. Acreditamos que, por conta da capacidade de amplificação de sinal característica dos receptores acoplados a proteína G, um aumento de expressão do receptor AT1aR em relação ao nível endógeno seja redundante para o fenômeno biológico estudado. Por outro lado, os resultados para o grupo com super-expressão de ATRAP corroboram nossa hipótese inicial, ao indicar uma atenuação do efeito de Ang II sobre a recuperação de pHi, em comparação aos demais grupos experimentais tratados com Ang II. Considerando que a recuperação de pHi em células OKP reflete essencialmente a atividade de troca Na+/H+ mediada pelo contra-transportador NHE3, podemos concluir que a regulação positiva de NHE3 via AT1aR/AngII é prejudicada pelo aumento de expressão da proteína ATRAP. / The experimental data suggests that, as shown in previous works from our laboratory, angiotensin II (Ang II) raises the pHi recovery rate in OKP cells. This upregulation is not enhanced by recombinant AT1aR overexpression, contrary to our initial hypothesis. We believe that, due to signal amplification mediated by G-protein coupled receptors, any increase in AT1aR would be redundant considering the biological phenomenon of interest. On the other hand, results from the ATRAP overexpression group supports our initial hypothesis, pointing an attenuated effect of Ang II over pHi recovery in relation to the remaining groups treated with Ang II. Considering that pHi recovery in OKP cells primarily reflects the Na+/H+ exchange activity mediated by NHE3 antiporter, we can conclude that NHE3 upregulation mediated by AT1aR/AngII is impaired by an increase in ATRAP protein expression.
3

O papel de ATRAP (AT1R associated protein) na modulação de NHE3 mediada por angiotensina II. / ATRAP (AT1R associated protein) role on modulation of angiotensin II-mediated NHE3 activity.

Juliano Zequini Polidoro 15 September 2014 (has links)
Os experimentos indicam, como já demonstrado em estudos prévios do laboratório, que angiotensina II (Ang II) apresenta efeito estimulatório sobre a cinética de recuperação de pHi em células OKP. Tal estímulo não é acentuado pela super-expressão de AT1aR recombinante, ao contrário do que imaginávamos inicialmente. Acreditamos que, por conta da capacidade de amplificação de sinal característica dos receptores acoplados a proteína G, um aumento de expressão do receptor AT1aR em relação ao nível endógeno seja redundante para o fenômeno biológico estudado. Por outro lado, os resultados para o grupo com super-expressão de ATRAP corroboram nossa hipótese inicial, ao indicar uma atenuação do efeito de Ang II sobre a recuperação de pHi, em comparação aos demais grupos experimentais tratados com Ang II. Considerando que a recuperação de pHi em células OKP reflete essencialmente a atividade de troca Na+/H+ mediada pelo contra-transportador NHE3, podemos concluir que a regulação positiva de NHE3 via AT1aR/AngII é prejudicada pelo aumento de expressão da proteína ATRAP. / The experimental data suggests that, as shown in previous works from our laboratory, angiotensin II (Ang II) raises the pHi recovery rate in OKP cells. This upregulation is not enhanced by recombinant AT1aR overexpression, contrary to our initial hypothesis. We believe that, due to signal amplification mediated by G-protein coupled receptors, any increase in AT1aR would be redundant considering the biological phenomenon of interest. On the other hand, results from the ATRAP overexpression group supports our initial hypothesis, pointing an attenuated effect of Ang II over pHi recovery in relation to the remaining groups treated with Ang II. Considering that pHi recovery in OKP cells primarily reflects the Na+/H+ exchange activity mediated by NHE3 antiporter, we can conclude that NHE3 upregulation mediated by AT1aR/AngII is impaired by an increase in ATRAP protein expression.
4

Insights Into Molecular Regulation Of Cardiomyocyte Differentiation Of Mouse Pluripotent Stem Cells

Abbey, Deepti 07 1900 (has links) (PDF)
Pluripotent stem cells (PSCs) are specialized cells, which have remarkable ability to maintain in an undifferentiated state and are capable of undergoing differentiation to three germ-layer lineage cell types, under differentiation-enabling conditions. PSCs include embryonic stem (ES)-cells, embryonal carcinoma (EC)-cells and embryonic germ (EG)-cells. ES-cells are derived from the inner cell mass (ICM) of day 3.5 blastocysts (mouse). On the other hand, EC- and EG-cells have different source of origin and exhibit some differences in terms of their differentiation abilities and culture requirements. These PSCs act as an ideal in-vitro model system to study early mammalian development and cell differentiation and, they could potentially be used for experimental cell-based therapy for a number of diseases. However, one of the problems encountered is the immune rejection of transplanted cells. For this, immune-matched induced pluripotent stem (iPS)-cells have been derived from somatic cells, by forced expression of a few stemness genes. Although, human PSCs lines are being experimented, their cell-therapeutic potential is still far from being thoroughly tested due to lack of our understanding regarding lineage-specific differentiation, homing and structural-functional integration of differentiated cell types in the host environment. To understand these mechanisms, it is desirable to have fluorescently-marked PSCs and their differentiated cell-types, which could facilitate experimental cell transplantation studies. In this regard, our laboratory has earlier generated enhanced green fluorescent protein (EGFP)-expressing FVB/N transgenic ‘green’ mouse: GU-3 line (Devgan et al., 2003). This transgenic mouse has been an excellent source of intrinsically green fluorescent cell types. Recently, we have derived a ‘GS-2’ ES-cell line from the GU-3 mouse line (Singh et al., 2012). Additionally, we envisaged the need for developing an iPS-cell line from the GU-3 mouse and then use them for studying cell differentiation. Thus, aims of the study described in the thesis are to: (1) develop an experimental system to derive EGFP-expressing fluorescently-marked iPS-cell line from a genetically non-permissive FVB/N mouse strain, characterize the established iPS-cell line and achieve differentiation of various cell types from EGFP-expressing iPS-cell line; (2) to study differentiation phenomenon, in particular to cardiac lineage, using select-cardiogenesis modulators and (3) to assess the gene-expression profiles and signaling system associated with cardiomyocyte differentiation of PSCs. This thesis is divided into four chapters with the 1st chapter being a review of literature followed by three data chapters. In the chapter I of the thesis, a comprehensive up-to¬date review of literature is provided pertaining to PSCs, their classification, derivation strategies especially for reprogramming of somatic cells for iPSC generation, their differentiation potential and characterization, particularly to cardiac lineage. Various molecular regulators involved in cardiac differentiation of PSCs with emphasis on epigenetic regulation involving DNA methylation and signaling pathways involved are described in detail. Subsequently, various approaches used for enhanced cardiac differentiation of PSCs and the therapeutic potential of PSC-derived differentiated cell types to treat disease(s) are discussed. Chapter-II describes the successful establishment of a permanent iPS-cell line (named ‘N9’ iPS-cell line) from the non-permissive FVB/N EGFP-transgenic GU-3 ‘green’ mouse. This chapter provides results pertaining to detailed derivation strategy and characterization of the ‘N9’ iPS-cell line which includes colony morphology, expansion (proliferation) efficiency, alkaline phosphatase staining, pluripotent markers’ expression analysis by qPCR and immunostaining approaches and karyotyping analysis. Further, in order to thoroughly assess the differentiation competence of the ‘N9’ iPS¬cell line, assessment of in-vitro and in-vivo differentiation potential of the ‘N9’ iPS-cell line by embryoid body (EB) formation and teratoma formation in nude mice and its detailed histological analysis showing three germ layer cell types and their derivatives were performed, followed by the generation of chimeric blastocysts by aggregation method. This established N9 iPS-cell line could potentially offer a suitable model system to study cardiac differentiation along with other established PSC lines such as the GS-2 and D3 ES-cell lines and the P19 EC-cell line. Following the establishment of the system to study cardiac differentiation of PSC lines, efforts were made to understand the biology of cardiac differentiation of PSCs (wild¬type and EGFP-transgenic PSC lines and P19 EC-cell line) using small molecules as modulators. Data pertaining to this is described in Chapter-III. The possible involvement of epigenetic regulation of cardiogenesis for example, DNA methylation changes in cardiogenesis-associated genes is studied using 5-aza cytidine as one of the chromatin modifiers. In order to understand the cardiac differentiation phenomenon, as a consequence of using 5-aza cytidine in cell culture, it was important to investigate its ability to induce/mediate cardiac differentiation. This involved an assessment by quantitating the cardiac beating phenotype and correlating this with enhanced cardiac-gene expression profiles. Further, DNA methylation regulation of cardiogenesis¬associated genes is described using various DNA methylation analysis techniques. Moreover, the possible involvement of other signaling members in mediating the cardiac differentiation is also studied using the P19 EC-cells. Results pertaining to the above findings are described in detail in the Chapter-III. Chapter-IV is focused on various efforts made towards investigating the ability of ascorbic acid to enhance cardiac differentiation of mouse ES-cells (GS-2 and D3 lines). Ascorbic acid has been implicated to be influencing cardiogenesis and it is reported to enhance differentiation of various cell types under certain culture conditions. Results pertaining to enhancement of cardiac differentiation of PSCs using ascorbic acid are presented in this chapter. This included assessment by quantitating cardiac beating phenotype and its correlation with enhanced cardiogenesis-associated gene expression profiles. Besides, estimation on the sorted cardiomyocyte population, derived from PSCs was also made using mature-cardiac marker. The possible underlying signaling mechanism involved was also studied in detail, using specific inhibitors for pERK (U0126), integrin signaling (pFAK; PP2) and collagen synthesis (DHP), in order to ascertain their involvement in ascorbic acid-mediated cardiac differentiation of mouse ES-cells. Subsequent to the three data chapters (II-IV), separate sections are provided for ‘Summary and Conclusion’ and for ‘Bibliography’, cited in the thesis. The overall scope of the study has been to understand the basic biology of cardiac differentiation from PSCs (EC-cells, iPS-cells and transgenic and wild-type ES-cells) and to assess, by using certain small molecules, whether PSCs could be coaxed to enhance the differentiation to a particular cell type (cardiac). The data contained in this thesis addresses the above theme.
5

Spherical Individual Cell-Based Models / Sphärische Einzelzell-basierte Modelle - Limitierungen und Anwendungen

Krinner, Axel 14 July 2010 (has links) (PDF)
Over the last decade a huge amount of experimental data on biological systems has been generated by modern high-throughput methods. Aided by bioinformatics, the '-omics' (genomics, transcriptomics, proteomics, metabolomics and interactomics) have listed, quantif ed and analyzed molecular components and interactions on all levels of cellular regulation. However, a comprehensive framework, that does not only list, but links all those components, is still largely missing. The biology-based but highly interdisciplinary field of systems biology aims at such a holistic understanding of complex biological systems covering the length scales from molecules to whole organisms. Spanning the length scales, it has to integrate the data from very different fields and to bring together scientists from those fields. For linking experiments and theory, hypothesis-driven research is an indispensable concept, formulating a cycle of experiment, modeling, model predictions for new experiments and, fi nally, their experimental validation as the start of the new iteration. On the hierarchy of length scales certain unique entities can be identi fied. At the nanometer scale such functional entities are molecules and at the micrometer level these are the cells. Cells can be studied in vitro as independent individuals isolated from an organism, but their interplay and communication in vivo is crucial for tissue function. Control over such regulation mechanisms is therefore a main goal of medical research. The requirements for understanding cellular interplay also illustrate the interdisciplinarity of systems biology, because chemical, physical and biological knowledge is needed simultaneously. Following the notion of cells as the basic units of life, the focus of this thesis are mathematical multi-scale models of multi-cellular systems employing the concept of individual (or agent) based modeling (IBM). This concept accounts for the entity cell and their individuality in function and space. Motivated by experimental observations, cells are represented as elastic and adhesive spheres. Their interaction is given by a model for elastic homogeneous spheres, which has been established for analysis of the elastic response of cells, plus an adhesion term. Cell movement is modeled by an equation of motion for each cell which is based on the balance of interaction, friction and active forces on the respective cell. As a fi rst step the model was carefully examined with regard to the model assumptions, namely, spherical shape, homogeneous isotropic elastic body and apriori undirected movement. The model examination included simulations of cell sorting and compression of multicellular spheroids. Cell sorting could not be achieved with only short range adhesion. However, it sorting completed with long range interactions for small cell numbers, but failed for larger aggregates. Compression dynamics of multi-cellular spheroids was apparently reproduced qualitatively by the model. But in a more detailed survey neither the time scales nor the rounding after compression could be reproduced. Based on these results, the applications consistent with the assumed simpli cations are discussed. One already established application is colony growth in two-dimensional cell cultures. In order to model cell growth and division, a two-phase model of the cell cycle was established. In a growth phase the cell doubles its volume by stochastic increments, and in a mitotic phase it divides into two daughter cells of equal volume. Additionally, control of the cell cycle by contact inhibition is included in the model. After examination of its applicability, the presented model is used for simulations of in vitro growth of mesenchymal stem cells (MSC) and subsequent cartilage formation in multi-cellular spheroids. A main factor for both processes is the oxygen concentration. Experimental results have shown, that i) MSC grow much better in vitro at low than at high oxygen concentrations and ii) the MSC progeny harvested from low oxygen culture produce higher amounts of the cartilage components aggrecan and collagen II in multicellular spheroids than the ones from high oxygen culture. In order to model these processes, IBM was extended by a stochastic model for cellular differentiation. In this model cellular differentiation is captured phenomenologically by two additional individual properties, the degree of differentiation and the lineage or cell type, which are subject to fl uctuations, that are state and environment dependent. After fitting the model parameters to the experimental results on MSC growth in monoclonal expansion cultures at low and high oxygen concentrations, the resulting simulated cell populations were used for initialization of the simulations of cartilage formation in multi-cellular spheroids. The model nicely reproduced the experimental results on growth dynamics and the observed number of functional cells in the spheroids and suggests the following explanation for the difference between the two expansion cultures: due to the stronger pre-differentiation found after expansion in high oxygen, the plasticity of these cells is smaller and less cell adopt the chondrogenic phenotype and start to produce cartilage. Moreover, the model predicts an optimal oxygen concentration for cartilage formation independent of expansion culture and a de-differentiating effect of low oxygen culture within 24h. Because all simulations comply with the concept of hypothesis-driven research and follow closely the experimental protocols, they can easily be tested and are currently used for optimization of a bioreactor for cartilage production. Cell populations are composed of individual cells and regulation of population properties is performed by individual cell, but knowledge about individual cell fates is largely missing due to the problem of single cell tracking. The IBM modeling approach used for modeling MSC growth and differentiation generically includes information of each individual cell and is therefore perfectly suited for tackling this question. Based on the validated parameter set, the model was used to generate predictions on plasticity of single cells and related population dynamics. Single cell plasticity was quantifi ed by calculating transition times into stem cell and differentiated cell states at high and low oxygen concentrations. At low oxygen the results predict a frequent exchange between all subpopulations, while at high oxygen a quasi-deterministic differentiation is found. After quantifying the plasticity of single cells at low and high oxygen concentration, the plasticity of a cell population is addressed in a simulation closely following a regeneration experiment of populations of hematopoietic progenitor cells. In the simulation the regeneration of the distribution of differentiation states in the population is monitored after selection of subpopulations of stem cells and differentiated cells. Simulated regeneration occurs on the time scales estimated from the single cell transition times except the unexpectedly fast regeneration from differentiated cells in the high oxygen environment, which favors differentiation. The latter case emphasizes the importance of single outlier cells in such system, which in this case repopulate less differentiated states with their progeny. In general, cell proliferation and regeneration behavior are in uenced by biomechanical and geometrical properties of the environment e.g. matrix stiffness or cell density. Because in the model cells are represented as physical objects, a variation of friction is linked to cell motility. The cultures of less motile cells become denser at the same size and the effects of contact inhibition of growth more pronounced. This variation of friction coe fficients allows the comparison of cultures with varying degrees of contact inhibition regarding their differentiation structure and the results suggest, that stalled proliferation is su fficient to explain the well-known differentiation effects in confl uent colonies. In addition, the composition of the simulated stem cell pool was analyzed regarding differentiation. In contrast to the established pedigree models, where stem cell can only be produced by asymmetric division, this model predicts that most of the cells in stem cell states descend from progenitor cells of intermediate differentiation states. A more detailed analysis of single cell derived clones revealed properties that could not be described by the model so far. First, a differentiation gradient was observed in larger colonies, that was the opposite of the one predicted by the model. Second, the proliferative activity turned out to depend not only on oxygen, but also to be a property of individual clones persisting over many generations. Because the relation slow growth/pre-differentiation also holds for single cell derived clones, the general model of differentiation is extended by another heritable individual property. Motivated by the decline of proliferation and differentiation in culture and the high metabolic and epigenetic activity during cell division, each division event is assumed to de-stabilize stem cell states. Consequently, in the model the cells age in terms of cell divisions determines the fl uctuations in stem cell states and the environment the mean fl uctuation strength. Including this novel concept, that links aging to growth and differentiation dynamics, into the model reproduces the experimental results regarding differentiation gradient and persistent clonal heterogeneity. The spatial differentiation pattern can largely be explained by the spatio-temporal growth pattern of the mono-clonal cell assembly: cells close to the border of the cell assembly have undergone more cell divisions than those in the interior and therefore their stem cell states are less stable. Heterogeneity of single-cell derived clones depends on the age of the first cell in the clone. When the stem cell fluctuations equal the mean fl uctuations strength, the proliferative activity passes a maximum at a certain age due to the destabilization of stem cell states. Thereafter the proliferative activity decreases, because more time is spent in non-proliferative differentiated states. Considering the number of divisions the cells have already undergone in vivo and after the initial expansion in vitro, it can be assumed that all cells have already passed this maximum. Interestingly, the model also predicts an optimal age for directed differentiation, when cells stably differentiate, but have not lost the required plasticity. According to the model, this clonal heterogeneity may be caused purely in vitro, but hypothetical simulation of in vivo aging yielded results consistent with experiments on MSC from rats of varying age. Finally, the detailed molecular regulation mechanisms in a multi-scale tissue model of liver zonation was studied, in which the key molecular components were explicitly modeled. Hence, this model resolved the intracellular regulation in higher resolution than the above considered differentiation models which had summarized the intracellular control and differentiation mechanisms by a few phenomenological, dynamical variables. The metabolic zonation of the liver is essential for many of the complex liver functions. One of the vitally important enzymes, glutamine synthetase, (GS) is only synthesized in a strictly defi ned pattern. Experimental evidence has shown that a particular pathway, the canonical wnt pathway, controls expression of the gene for GS. A model for transport, receptor dynamics and intracellular regulation mechanism has been set up for modeling the spatio-temporal formation of this pattern. It includes membrane-bound transport of the morphogen and an enzyme kinetics approach to fibeta-catenin-regulation in the interior of the cell. As an IBM this model reproduces the results of co-culture experiments in which two-dimensional arrangements of liver cells and an epithelial liver cell line give rise to different patterns of GS synthesis. The two main predictions of the model are: First, GS-synthesis requires a certain local cell number of wnt releasing cells. And second, a simple inversion of geometry explains the difference between the specifi c GS pattern found in the liver and in the co-culture experiments. Summarizing the results presented in this thesis, it can be concluded that properties such as the occurrence of memory effects and single cells pursuing fates far off the population average could be essential for biological function. Considering the role of single cells in many tissues, the use of individual based methods, that are able to take such effects into account, can be expected to be a very valuable tool for the problems of systems biology.
6

Spherical Individual Cell-Based Models: Limitations and Applications

Krinner, Axel 05 July 2010 (has links)
Over the last decade a huge amount of experimental data on biological systems has been generated by modern high-throughput methods. Aided by bioinformatics, the ''-omics'' (genomics, transcriptomics, proteomics, metabolomics and interactomics) have listed, quantif ed and analyzed molecular components and interactions on all levels of cellular regulation. However, a comprehensive framework, that does not only list, but links all those components, is still largely missing. The biology-based but highly interdisciplinary field of systems biology aims at such a holistic understanding of complex biological systems covering the length scales from molecules to whole organisms. Spanning the length scales, it has to integrate the data from very different fields and to bring together scientists from those fields. For linking experiments and theory, hypothesis-driven research is an indispensable concept, formulating a cycle of experiment, modeling, model predictions for new experiments and, fi nally, their experimental validation as the start of the new iteration. On the hierarchy of length scales certain unique entities can be identi fied. At the nanometer scale such functional entities are molecules and at the micrometer level these are the cells. Cells can be studied in vitro as independent individuals isolated from an organism, but their interplay and communication in vivo is crucial for tissue function. Control over such regulation mechanisms is therefore a main goal of medical research. The requirements for understanding cellular interplay also illustrate the interdisciplinarity of systems biology, because chemical, physical and biological knowledge is needed simultaneously. Following the notion of cells as the basic units of life, the focus of this thesis are mathematical multi-scale models of multi-cellular systems employing the concept of individual (or agent) based modeling (IBM). This concept accounts for the entity cell and their individuality in function and space. Motivated by experimental observations, cells are represented as elastic and adhesive spheres. Their interaction is given by a model for elastic homogeneous spheres, which has been established for analysis of the elastic response of cells, plus an adhesion term. Cell movement is modeled by an equation of motion for each cell which is based on the balance of interaction, friction and active forces on the respective cell. As a fi rst step the model was carefully examined with regard to the model assumptions, namely, spherical shape, homogeneous isotropic elastic body and apriori undirected movement. The model examination included simulations of cell sorting and compression of multicellular spheroids. Cell sorting could not be achieved with only short range adhesion. However, it sorting completed with long range interactions for small cell numbers, but failed for larger aggregates. Compression dynamics of multi-cellular spheroids was apparently reproduced qualitatively by the model. But in a more detailed survey neither the time scales nor the rounding after compression could be reproduced. Based on these results, the applications consistent with the assumed simpli cations are discussed. One already established application is colony growth in two-dimensional cell cultures. In order to model cell growth and division, a two-phase model of the cell cycle was established. In a growth phase the cell doubles its volume by stochastic increments, and in a mitotic phase it divides into two daughter cells of equal volume. Additionally, control of the cell cycle by contact inhibition is included in the model. After examination of its applicability, the presented model is used for simulations of in vitro growth of mesenchymal stem cells (MSC) and subsequent cartilage formation in multi-cellular spheroids. A main factor for both processes is the oxygen concentration. Experimental results have shown, that i) MSC grow much better in vitro at low than at high oxygen concentrations and ii) the MSC progeny harvested from low oxygen culture produce higher amounts of the cartilage components aggrecan and collagen II in multicellular spheroids than the ones from high oxygen culture. In order to model these processes, IBM was extended by a stochastic model for cellular differentiation. In this model cellular differentiation is captured phenomenologically by two additional individual properties, the degree of differentiation and the lineage or cell type, which are subject to fl uctuations, that are state and environment dependent. After fitting the model parameters to the experimental results on MSC growth in monoclonal expansion cultures at low and high oxygen concentrations, the resulting simulated cell populations were used for initialization of the simulations of cartilage formation in multi-cellular spheroids. The model nicely reproduced the experimental results on growth dynamics and the observed number of functional cells in the spheroids and suggests the following explanation for the difference between the two expansion cultures: due to the stronger pre-differentiation found after expansion in high oxygen, the plasticity of these cells is smaller and less cell adopt the chondrogenic phenotype and start to produce cartilage. Moreover, the model predicts an optimal oxygen concentration for cartilage formation independent of expansion culture and a de-differentiating effect of low oxygen culture within 24h. Because all simulations comply with the concept of hypothesis-driven research and follow closely the experimental protocols, they can easily be tested and are currently used for optimization of a bioreactor for cartilage production. Cell populations are composed of individual cells and regulation of population properties is performed by individual cell, but knowledge about individual cell fates is largely missing due to the problem of single cell tracking. The IBM modeling approach used for modeling MSC growth and differentiation generically includes information of each individual cell and is therefore perfectly suited for tackling this question. Based on the validated parameter set, the model was used to generate predictions on plasticity of single cells and related population dynamics. Single cell plasticity was quantifi ed by calculating transition times into stem cell and differentiated cell states at high and low oxygen concentrations. At low oxygen the results predict a frequent exchange between all subpopulations, while at high oxygen a quasi-deterministic differentiation is found. After quantifying the plasticity of single cells at low and high oxygen concentration, the plasticity of a cell population is addressed in a simulation closely following a regeneration experiment of populations of hematopoietic progenitor cells. In the simulation the regeneration of the distribution of differentiation states in the population is monitored after selection of subpopulations of stem cells and differentiated cells. Simulated regeneration occurs on the time scales estimated from the single cell transition times except the unexpectedly fast regeneration from differentiated cells in the high oxygen environment, which favors differentiation. The latter case emphasizes the importance of single outlier cells in such system, which in this case repopulate less differentiated states with their progeny. In general, cell proliferation and regeneration behavior are in uenced by biomechanical and geometrical properties of the environment e.g. matrix stiffness or cell density. Because in the model cells are represented as physical objects, a variation of friction is linked to cell motility. The cultures of less motile cells become denser at the same size and the effects of contact inhibition of growth more pronounced. This variation of friction coe fficients allows the comparison of cultures with varying degrees of contact inhibition regarding their differentiation structure and the results suggest, that stalled proliferation is su fficient to explain the well-known differentiation effects in confl uent colonies. In addition, the composition of the simulated stem cell pool was analyzed regarding differentiation. In contrast to the established pedigree models, where stem cell can only be produced by asymmetric division, this model predicts that most of the cells in stem cell states descend from progenitor cells of intermediate differentiation states. A more detailed analysis of single cell derived clones revealed properties that could not be described by the model so far. First, a differentiation gradient was observed in larger colonies, that was the opposite of the one predicted by the model. Second, the proliferative activity turned out to depend not only on oxygen, but also to be a property of individual clones persisting over many generations. Because the relation slow growth/pre-differentiation also holds for single cell derived clones, the general model of differentiation is extended by another heritable individual property. Motivated by the decline of proliferation and differentiation in culture and the high metabolic and epigenetic activity during cell division, each division event is assumed to de-stabilize stem cell states. Consequently, in the model the cells age in terms of cell divisions determines the fl uctuations in stem cell states and the environment the mean fl uctuation strength. Including this novel concept, that links aging to growth and differentiation dynamics, into the model reproduces the experimental results regarding differentiation gradient and persistent clonal heterogeneity. The spatial differentiation pattern can largely be explained by the spatio-temporal growth pattern of the mono-clonal cell assembly: cells close to the border of the cell assembly have undergone more cell divisions than those in the interior and therefore their stem cell states are less stable. Heterogeneity of single-cell derived clones depends on the age of the first cell in the clone. When the stem cell fluctuations equal the mean fl uctuations strength, the proliferative activity passes a maximum at a certain age due to the destabilization of stem cell states. Thereafter the proliferative activity decreases, because more time is spent in non-proliferative differentiated states. Considering the number of divisions the cells have already undergone in vivo and after the initial expansion in vitro, it can be assumed that all cells have already passed this maximum. Interestingly, the model also predicts an optimal age for directed differentiation, when cells stably differentiate, but have not lost the required plasticity. According to the model, this clonal heterogeneity may be caused purely in vitro, but hypothetical simulation of in vivo aging yielded results consistent with experiments on MSC from rats of varying age. Finally, the detailed molecular regulation mechanisms in a multi-scale tissue model of liver zonation was studied, in which the key molecular components were explicitly modeled. Hence, this model resolved the intracellular regulation in higher resolution than the above considered differentiation models which had summarized the intracellular control and differentiation mechanisms by a few phenomenological, dynamical variables. The metabolic zonation of the liver is essential for many of the complex liver functions. One of the vitally important enzymes, glutamine synthetase, (GS) is only synthesized in a strictly defi ned pattern. Experimental evidence has shown that a particular pathway, the canonical wnt pathway, controls expression of the gene for GS. A model for transport, receptor dynamics and intracellular regulation mechanism has been set up for modeling the spatio-temporal formation of this pattern. It includes membrane-bound transport of the morphogen and an enzyme kinetics approach to fibeta-catenin-regulation in the interior of the cell. As an IBM this model reproduces the results of co-culture experiments in which two-dimensional arrangements of liver cells and an epithelial liver cell line give rise to different patterns of GS synthesis. The two main predictions of the model are: First, GS-synthesis requires a certain local cell number of wnt releasing cells. And second, a simple inversion of geometry explains the difference between the specifi c GS pattern found in the liver and in the co-culture experiments. Summarizing the results presented in this thesis, it can be concluded that properties such as the occurrence of memory effects and single cells pursuing fates far off the population average could be essential for biological function. Considering the role of single cells in many tissues, the use of individual based methods, that are able to take such effects into account, can be expected to be a very valuable tool for the problems of systems biology.

Page generated in 0.1077 seconds