• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 41
  • 22
  • Tagged with
  • 183
  • 183
  • 66
  • 60
  • 42
  • 33
  • 25
  • 24
  • 24
  • 23
  • 23
  • 23
  • 22
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Inferring structural properties of protein-DNA binding using high-throughput sequencing : the paradigm of GATA1, KLF1 and their complexes GATA1/FOG1 and GATA1/KLF1 : insights into the transcriptional regulation of the erythroid cell lineage

Oikonomopoulos, Spyridon January 2014 (has links)
GATA1 and KLF1 are transcription factors that regulate genes which are important for the development of erythroid cells. The GATA1 transcriptional co-factor FOG1 has been shown to be essential in a wide range of GATA1 dependent cellular functions. Here we tried to understand the diverse mechanisms by which GATA1 and KLF1 recognize their binding sites, how the GATA1 recognition mechanisms are affected by complexation with either FOG1 or KLF1 and how the GATA1 recognition mechanisms affect the transcriptional regulation of the erythroid differentiation. We profiled the DNA binding specificities/affinities of a GATA1 fragment (mGATA1NC), that contains only the two DNA binding domains (N-terminal and C-terminal Zn finger), and the DNA binding specificities/affinities of a KLF1 fragment (mKLF1257-358), that contains the three DNA binding domains, using a novel methodology that combines EMSA with high throughput sequencing (EMSA-seq (Wong et al., 2011a)). We also profiled the DNA binding specificities of the C-terminal Zn finger of GATA1 alone (mGATA1C), the wt-mGATA1, the wt-mGATA1/wt-mFOG1 complex and the mGATA1NC/mKLF1257-358 complex. At first, we confirmed that the N-terminal Zn finger of GATA1 has a strong preference for the “GATC” motif, whereas the C-terminal Zn finger of GATA1 has a strong preference for the “GATA” motif. Next, we found that in the mGATA1NC, both DNA binding domains can bind simultaneously a wide range of different positional combinations of the co-occurring “GATA” and “GATC” motifs, on the same DNA sequence. The wt-mGATA1 did not show the ability to bind in the same co-occurring motifs implying an effect of the non-DNA binding domains of the protein in the regulation of its DNA binding specificities. On the contrary, complexation of wt-mGATA1 with the wt-mFOG1 partially restored its ability to bind in a now limited range of different positional combinations of the co-occurring “GATA” and “GATC” motifs, on the same DNA sequence. Similar observations were made for other pairs of GATA1 N-terminal and C-terminal Zn finger specific motifs. We then projected the GATA1 DNA binding specificities/affinities in vivo and we classified the GATA1 ChIP-seq peaks in low, medium or high affinity based on the number of the GATA1 motifs. We noticed that high affinity GATA1 ChIP-seq peaks tend to appear in regions with low nucleosome occupancy. We also noticed that GATA1 ChIP-seq peaks in the enhancer regions are usually high affinity whereas GATA1 ChIP-seq peaks in the proximal promoter regions are usually low affinity. Additionally, we observed that high affinity GATA1 ChIP-seq peaks are usually found in regions with increased levels of H3K4me2 and are associated with a higher decrease in the H3K4me3 levels on the TSS of the nearby genes. None of these GATA1 related in vivo observations were found for the KLF1 ChIP-seq positions. These findings significantly advance our understanding of the DNA binding properties of GATA1, KLF1 and their complexes and give an insight on the importance of the GATA1 DNA binding affinities in the regulation of the erythroid transcriptional program. Overall the work establishes an experimental and analytical framework to investigate how transcriptional co-factors can change the DNA binding specificities of specific transcription factors and how integration of the transcription factor DNA binding affinities with in vivo data can give novel insights into the transcriptional regulation.
172

Imaging the assembly of the Staphylococcal pore-forming toxin alpha-Hemolysin

Thompson, James Russell January 2009 (has links)
Alpha-hemolysin is a pore-forming toxin secreted by pathogenic Staphylococcus aureus. Its spontaneous oligomerization and assembly into a trans-bilayer beta-barrel pore is a model for the assembly of many other pore-forming toxins. It is studied here in vitro as a means to probe general membrane protein oligomerization and lipid bilayer insertion. This thesis details the results of experiments to develop and implement a novel in vitro lipid bilayer system, Droplet-on-Hydrogel Bilayers (DHBs) for the single-molecule imaging of alpha-hemolysin assembly. Chapter 2 describes the development of DHBs and their electrical characterization. Experiments show the detection of membrane channels in SDS-PAGE gels post-electrophoresis and DHBs use as a platform for nanopore stochastic sensing. Chapter 3 describes the engineering and characterization of fluorescently-labelled monomeric alpha-hemolysin for use in protein assembly imaging experiments described in Chapter 6. Chapter 4 describes the characterization of DHB lipid fluidity and suitability for single-molecule studies of membrane protein diffusion. In addition, a novel single-particle tracking algorithm is described. Chapter 5 describes experiments demonstrating simultaneous electrical and fluorescence measurements of alpha-hemolysin pores embedded within DHBs. The first multiple-pore stochastic sensing in a single-lipid bilayer is also described. Chapter 6 describes experiments studying the assembly of alpha-hemolysin monomers in DHBs. Results show that alpha-hemolysin assembles rapidly into its oligomeric state, with no detection of long-lived intermediate states.
173

Functional characterization of the teleost multiple tissue (tmt) opsin family and their role in light detection

Fu, Josephine K. Y. January 2013 (has links)
In addition to a central circadian clock in the suprachiasmatic nucleus (SCN), zebrafish (Danio rerio) have local clock systems in their peripheral tissues. These peripheral tissues express a complement of clock genes that can be synchronized with the 24 h light/dark cycle and thus may be entrained by light. To date, teleost multiple tissue (tmt) opsin identified from Fugu rubripes and Danio rerio is the only opsin that has been proposed as a candidate to mediate this cellular photoentrainment (Moutsaki et al., 2003). Here we report the discovery of a multigene family of tmt opsins found not only in the teleost fishes, but in vertebrates,including amphibians, birds, reptiles, and some mammals. Phylogenetic analysis demonstrated that this gene family consists of three main classes, tmtI, tmtII and tmtIII, with each duplicating further to give two paralogues in the zebrafish genome. Their predicted amino acid sequences contain most of the characteristic features for the function of a photopigment opsin, as well as seven transmembrane segments indicative of a G protein coupled receptor (GPCR) superfamily. Significantly, reverse transcription polymerase chain reaction (RT-PCR) reveals that the tmt opsin genes in zebrafish are both temporally and spatially regulated. To investigate if these tmt photopigments mediate light-activated currents in cells, each opsin was expressed in vitro and the responses characterised by calcium imaging, whole-cell patch clamp electrophysiology, UV-Vis spectrophotometric analysis, and bioluminescence reporter assay. Collectively, these data suggest that some of the opsin photoproteins signal via Gi-type G protein pathway. Interestingly, the spectral analysis obtained shows that most tmt opsins tested are UV-sensitive when reconstituted in vitro with 11-cis and all-trans retinal, indicating an intrinsic bistable dynamics. Using site directed mutagenesis on one of the tmt opsins, tmt10, the potential spectral tuning sites involved in UV detection were tested. As part of this study, tmt opsin cDNAs were isolated from three populations of Mexican tetra (Astyanax mexicanus): surface, Pachon and Steinhardt. This allowed for a direct comparison between the tmt opsins present in the dark adapted species (cavefish) versus those of the light adapted species (zebrafish). It is hoped that the findings from this project will contribute to our understanding of non-visual light detection in fish and the evolution of their non-image forming photoreception.
174

Membrane protein mechanotransduction : computational studies and analytics development

Dahl, Anna Caroline E. January 2014 (has links)
Membrane protein mechanotransduction is the altered function of an integral membrane protein in response to mechanical force. Such mechanosensors are found in all kingdoms of life, and increasing numbers of membrane proteins have been found to exhibit mechanosensitivity. How they mechanotransduce is an active research area and the topic of this thesis. The methodology employed is classical molecular dynamics (MD) simulations. MD systems are complex, and two programs were developed to reduce this apparent complexity in terms of both visual abstraction and statistical analysis. Bendix detects and visualises helices as cylinders that follow the helix axis, and quantifies helix distortion. The functionality of Bendix is demonstrated on the symporter Mhp1, where a state is identified that had hitherto only been proposed. InterQuant tracks, categorises and orders proximity between parts of an MD system. Results from multiple systems are statistically interrogated for reproducibility and significant differences at the resolution of protein chains, residues or atoms. Using these tools, the interaction between membrane and the Escherichia coli mechanosensitive channel of small conductance, MscS, is investigated. Results are presented for crystal structures captured in different states, one of which features electron density proposed to be lipid. MD results supports this hypothesis, and identify differential lipid interaction between closed and open states. It is concluded that propensity for lipid to leave for membrane bulk drives MscS state stability. In a subsequent study, MscS is opened by membrane surface tension for the first time in an MD setup. The gating mechanism of MscS is explored in terms of both membrane and protein deformation in response to membrane stretch. Using novel tension methodology and the longest MD simulations of MscS performed to date, a molecular basis for the Dashpot gating mechanism is proposed. Lipid emerges as an active structural element with the capacity to augment protein structure in the protein structure-function paradigm.
175

Structural studies of Norrin dependent Wnt/beta-catenin signaling

Chang, Tao-Hsin January 2014 (has links)
Norrin is a secreted cystine-knot growth factor that plays critical roles in vascular development in the brain, retina, and cochlea, as well as the uterus. Although Norrin is unrelated to the lipid-modified morphogens Wnts, Norrin activates the canonical Wnt/β-catenin pathway by binding to receptor Frizzled4 cysteine-rich domain (Fz4-CRD) and co-receptors of low density lipoprotein receptor related protein 5/6 ectodomain (Lrp5/6-ECD) in conjunction with Tetraspanin-12 (Tspan-12). Like Wnts, Norrin has limited extracellular diffusion properties as a result of associating with heparan sulfate proteoglycans (HSPGs). Mutations lead to inherited disordered retinal vascularization diseases such as Norrie disease, familial exudative vitreoretinopathy and coats' disease. However, the molecular mechanism of how Norrin initiates signalling by engagement with Fz4, Lrp5/6, and HSPGs has remained unresolved. Here, novel strategies for protein production of recombinant human Norrin and Fz4-CRD as well as the complex are developed. The crystal structures of Norrin and its complex with Fz4-CRD, plus complex bound with the heparin mimic sucrose octasulphate, and unliganded structures of Fz4-CRD are presented. These structural data together with biophysical and cellular assays not only reveal the Fz4 and Lrp5/6 binding sites on distinct patches of the Norrin surface, but also indicate the HSPGs binding site on Norrin and Fz4-CRD as well as providing a framework to explain numerous disease-related mutations. Structural comparison with Xenopus Wnt8 in complex with mouse Fz8-CRD provides molecular insights for our understanding of ligand-receptor binding specificity and promiscuity, which has important implications for developing therapeutic strategies against Norrin dependent retinal disorders, and cancers caused by abnormal Wnt signaling.
176

Molecular biophysics of strong DNA bending and the RecQ DNA helicase

Harrison, Ryan M. January 2014 (has links)
Molecular biophysics is a rapidly evolving field aimed at the physics-based investigation of the biomolecular processes that enable life. In this thesis, we explore two such processes: the thermodynamics of DNA bending, and the mechanism of the RecQ DNA helicase. A computational approach using a coarse-grained model of DNA is employed for the former; an experimental approach relying heavily on single-molecule fluorescence for the latter. There is much interest in understanding the physics of DNA bending, due to both its biological role in genome regulation and its relevance to nanotechnology. Small DNA bending fluctuations are well described by existing models; however, there is less consensus on what happens at larger bending fluctuations. A coarse-grained simulation is used to fully characterize the thermodynamics and mechanics of duplex DNA bending. We then use this newfound insight to harmonize experimental results between four distinct experimental systems: a 'molecular vise', DNA cyclization, DNA minicircles and a 'strained duplex'. We find that a specific structural defect present at large bending fluctuations, a 'kink', is responsible for the deviation from existing theory at lengths below about 80 base pairs. The RecQ DNA helicase is also of much biological and clinical interest, owing to its essential role in genome integrity via replication, recombination and repair. In humans, heritable defects in the RecQ helicases manifest clinically as premature aging and a greatly elevated cancer risk, in disorders such as Werner and Bloom syndromes. Unfortunately, the mechanism by which the RecQ helicase processes DNA remains poorly understood. Although several models have been proposed to describe the mechanics of helicases based on biochemical and structural data, ensemble experiments have been unable to address some of the more nuanced questions of helicase function. We prepare novel substrates to probe the mechanism of the RecQ helicase via single-molecule fluorescence, exploring DNA binding, translocation and unwinding. Using this insight, we propose a model for RecQ helicase activity.
177

Magnetic field effects in chemical systems

Rodgers, Christopher T. January 2007 (has links)
Magnetic fields influence the rate and/or yield of chemical reactions that proceed via spin correlated radical pair intermediates. The field of spin chemistry centres around the study of such magnetic field effects (MFEs). This thesis is particularly concerned with the effects of the weak magnetic fields B₀ ~ 1mT relevant in the ongoing debates on the mechanism by which animals sense the geomagnetic field and on the putative health effects of environmental electromagnetic fields. Relatively few previous studies have dealt with such weak magnetic fields. This thesis presents several new theoretical tools and applies them to interpret experimental measurements. Chapter 1 surveys the development and theory of spin chemistry. Chapter 2 introduces the use of Tikhonov and Maximum Entropy Regularisation methods as a new means of analysing MARY field effect data. These are applied to recover details of the diffusive motion of reacting pyrene and N,N-dimethylaniline radicals. Chapter 3 gives a fresh derivation and appraisal of an approximate, semiclassical approach to MFEs. Monte Carlo calculations allow the elucidation of several "rules of thumb" for interpreting MFE data. Chapter 4 discusses recent optically-detected zero-field EPR measurements, adapting the gamma-COMPUTE algorithm from solid state NMR for their interpretation. Chapter 5 explores the role of RF polarisation in producing MFEs. The breakdown in weak fields of the familiar rotating frame approximation is analysed. Chapter 6 reviews current knowledge and landmark experiments in the area of animal magnetoreception. The origins of the sensitivity of European robins Erithacus rubecula to the Earth’s magnetic field are given particular attention. In Chapter 7, Schulten and Ritz’s hypothesis that avian magnetoreception is founded on a radical pair mechanism (RPM) reaction is appraised through calculations in model systems. Chapter 8 introduces quantitative methods of analysing anisotropic magnetic field effects using spherical harmonics. Chapter 9 considers recent observations that European robins may sometimes be disoriented by minuscule RF fields. These are shown to be consistent with magnetoreception via a radical pair with no (effective) magnetic nuclei in one of the radicals.
178

Dissecting the C-DI-GMP Signaling Pathways : Tools and Tales

Sharma, Indra Mani January 2014 (has links) (PDF)
Evaluating aerodynamic noise from aircraft engines is a design stage process, so that it conform to regulations at airports. Aerodynamic noise is also a principal source of structural vibration and internal noise in short/vertical take off and landing and rocket launches. Acoustic loads may be critical for the proper functioning of electronic and mechanical components. It is imperative to have tools with capability to predict noise generation from turbulent flows. Understanding the mechanism of noise generation is essential in identifying methods for noise reduction. Lighthill (1952) and Lighthill (1954) provided the first explanation for the mechanism of aerodynamic noise generation and a procedure to estimate the radiated sound field. Many such procedures, known as acoustic analogies are used for estimating the radiated sound field in terms of the turbulent fluid flow properties. In these methods, the governing equations of the fluid flow are rearranged into two parts, the acoustic sources and the propagation terms. The noise source terms and propagation terms are different in different approaches. A good description of the turbulent flow field and the noise sources is required to understand the mechanism of noise generation. Computational aeroacoustics (CAA) tools are used to calculate the radiated far field noise. The inputs to the CAA tools are results from CFD simulations which provide details of the turbulent flow field and noise sources. Reynolds-Averaged Navier Stokes (RANS) solutions can be used as inputs to CAA tools which require only time-averaged mean quantities. The output of such tools will also be mean quantities. While complete unsteady turbulent flow details can be obtained from Direct Numerical Simulation (DNS), the computation is limited to low or moderate Reynolds number flows. Large eddy simulations (LES) provide accurate description for the dynamics of a range of large scales. Most of the kinetic energy in a turbulent flow is accounted by the large-scale structures. It is also the large-scale structures which accounts for the maximum contribution towards the radiated sound field. The results from LES can be used as an input to a suitable CAA tool to calculate the sound field. Numerical prediction of turbulent flow field, the acoustic sources and the radiated sound field is at the focus of this study. LES based on explicit filtering method is used for the simulations. The method uses a low-pass compact filter to account for the sub-grid scale effects. A one-parameter fourth-order compact filter scheme from Lele (1992) is used for this purpose. LES has been carried out for four different flow situations: (i) round jet (ii) plane jet (iii) impinging round jet and (iv) impinging plane jet. LES has been used to calculate the unsteady flow evolution of these cases and the Lighthill’s acoustic sources. A compact difference scheme proposed by Hixon & Turkel (1998) which involves only bi-diagonal matrices are used for evaluating spatial derivatives. The scheme provides similar spectral resolution as standard tridiagonal compact schemes for the first spatial derivatives. The scheme is computationally less intensive as it involves only bi-diagonal matrices. Also, the scheme employs only a two-point stencil. To calculate the radiated sound field, the Helmholtz equation is solved using the Green’s function approach, in the form of the Kirchhoff-Helmholtz integral. The integral is performed over a surface which is present entirely in the linear region and covers the volume where acoustic sources are present. The time series data of pressure and the normal component of the pressure gradient on the surface are obtained from the CFD results. The Fourier transforms of the time series of pressure and pressure gradient are then calculated and are used as input for the Kirchhoff-Helmholtz integral. The flow evolution for free jets is characterised by the growth of the instability waves in the shear layer which then rolls up into large vortices. These large vortical structures then break down into smaller ones in a cascade which are convected downstream with the flow. The rms values of the Lighthill’s acoustic sources showed that the sources are located mainly at regions immediately downstream of jet break down. This corresponds to the large scale structures at break down. The radiated sound field from free jets contains two components of noise from the large scales and from the small scales. The large structures are the dominant source for the radiated sound field. The contribution from the large structures is directional, mainly at small angles to the downstream direction. To account for the difference in jet core length, the far field SPL are calculated at points suitably shifted based on the jet core length. The peak value for the radiated sound field occurs between 30°and 35°as reported in literature. Convection of acoustic sources causes the radiated sound field to be altered due to Doppler effect. Lighthills sources along the shear layer were examined in the form of (x, t) plots and phase velocity pattern in (ω, k) plots to analyse for their convective speeds. These revealed that there is no unique convective speeds for the acoustic sources. The median convective velocity Uc of the acoustic sources in the shear layer is proportional to the jet velocity Uj at the center of the nozzle as Uc ≈ 0.6Uj. Simulations of the round jet at Mach number 0.9 were used for validating the LES approach. Five different cases of the round jet were used to understand the effect of Reynolds number and inflow perturbation on the flow, acoustic sources and the radiated sound field. Simulations were carried out for an Euler and LES at Reynolds number 3600 and 88000 at two different inflow perturbations. The LES results for the mean flow field, turbulence profiles and SPL directivity were compared with DNS of Freund (2001) and experimental data available in literature. The LES results showed that an increase in inflow forcing and higher Reynolds number caused the jet core length to reduce. The turbulent energy spectra showed that the energy content in smaller scale is higher for higher Reynolds number. LES of plane jets were carried out for two different cases, one with a co-flow and one without co-flow. LES of plane jets were carried out to understand the effect of co-flow on the sound field. The plane jets were of Mach number 0.5 and Reynolds number of 3000 based on center-line velocity excess at the nozzle. This is similar to the DNS by Stanley et al. (2002). It was identified that the co-flow leads to a reduction in turbulence levels. This was also corroborated by the turbulent energy spectrum plots. The far field radiation for the case without co-flow is higher over all angles. The contribution from the low frequencies is directional, mainly towards the downstream direction. The range of dominant convective velocities of the acoustic sources were different along shear layers and center-line. The plane jet results were also used to bring out a qualitative comparison of flow and the radiation characteristics with round jets. For the round jet, the center-line velocity decays linearly with the stream-wise distance. In the plane jet case, it is the square of the center-line velocity excess which decays linearly with the stream-wise distance. The turbulence levels at any section scales with the center-line stream-wise velocity. The decay of turbulence level is slower for the plane jet and hence the acoustic sources are present for longer distance along the downstream direction. Subsonic impinging jets are composed of four regions, the jet core, the fully developed jet, the impingement zone and the wall jet. The presence of the second region (fully developed free jet) depends on the distance of the wall from the nozzle and the length of the jet core. In impinging jets, reflection from the wall and the wall jet are additional sources of noise compared to the free jets. The results are analysed for the contribution of the different regions of the flow towards the radiated sound field. LES simulations of impinging round jets and impinging plane jet were carried out for this purpose. In addition, the results have been compared with equivalent free jets. The directivity plots showed that the SPL levels are significantly higher for the impinging jets at all angles. For free jets, a typical time scale for the acoustic sources is the ratio of the nozzle size to the jet velocity. This is ro/Uj for round jets and h/Uj for plane jets. For impinging jets, the non-dimensionlised rms of Lighthill’s source indicates that the time scale for acoustic sources is the ratio of the height of the nozzle from the wall to the jet velocity be L/Uj. LES of impinging round jets was carried out for two cases with different inflow perturbations. The jets were at Reynolds number of 88000 and Mach number of 0.9, same as the free jet cases. The impingement wall was at a distance L = 24ro from the nozzle exit. For impinging round jets, the SPL levels are found to be higher than the equivalent free jets. From the SPL levels and radiated noise spectra it was shown that the contribution from the large scale structures and its reflection from the wall is directional and at small angles to the wall normal. The difference in the range of angles where the radiation from the large scale structures were observed shows the significance of refraction of sound waves inside the flow. The rms values of the Lighthill’s sources indicate two dominant regions for the sources, just downstream of jet breakdown and in the impingement zone. The LES of impinging plane jet was done for a jet of Mach number 0.5 and Reynolds number of 6000. The impingement wall was at a distance L = 10h from the nozzle exit. The radiated sound field appears to emanate from this impingement zone. The directivity and the spectrum plots of the far field SPL indicate that there is no preferred direction of radiation from the impingement zone. The Lighthill’s sources are concentrated mainly in the impingement zone. The rms values of the sources indicate that the peak values occur in the impingement zone. The results from the different flow situations demonstrates the capability of LES with explicit filtering method in predicting the turbulent flow and radiated noise field. The method is robust and has been successfully used for moderate Reynolds number and an Euler simulation. An important feature is that LES can be used to identify acoustic sources and its convective speeds. It has been shown that the Lighthill source calculations, the calculated sound field and the observed radiation patterns agree well. An explanation for these based on the different turbulent flow structures has also been provided.
179

Structural Studies on Heat Shock Protein 90 from Dictyostelium Discoideum and Oryza Sativa

Raman, Swetha January 2014 (has links) (PDF)
Molecular chaperones are proteins that interact with and aid in stabilization and activation of other proteins. Chaperones help proteins attain their three dimensional conformation, without forming a part of the final structure. Many of the chaperones are stress proteins known as Heat shock proteins (Hsps). Their expression is upregulated in response to various kinds of stress such as heat stress, oxidative stress etc., which threaten the protein homeostasis, by structurally destabilizing cellular proteins, and increasing the concentration of aggregation-prone folding intermediates. The Hsps are classified according to their molecular weight into Hsp40, Hsp60, Hsp70, Hsp90, Hsp100, and the small Hsp families. Some of them are constitutively expressed and play a fundamental role in de novo protein folding. They further aid in proteome maintenance by assisting in oligomeric assembly, protein trafficking, refolding of stress denatured protein, preventing protein aggregation and protein degradation. Heat shock protein 90 (Hsp90) are one of the important representatives of this class of proteins. Hsp90 are highly conserved class of molecular chaperones. They are found in bacteria, eukaryotes, but not in archaea. In contrast to the eukaryotes which require a functional cytoplasmic Hsp90 for viability, the bacterial counterpart (HtpG) is typically nonessential. Hsp90 is an ATP dependent chaperone. Hsp90 form dimers, with each protomer consisting of three functional domains: N- terminal, ATP binding domain, Middle domain and C-terminal domain. Hsp90 is a dynamic protein, and undergoes an elaborate conformational cycle during its ATPase cycle, which is essential for its chaperoning activity. The Hsp90 chaperone cycle is regulated by interaction with diverse cochaperones. Hsp90 interacts with specific set of substrate proteins. Many of these substrate proteins function at the heart of several cellular processes like signalling, cell cycle, apoptosis. Studies from protozoans like Leishmania, Plasmodium, Trypanosoma etc. have also implicated the role of Hsp90 in their growth and stage transitions. Thus, selective inhibition of Hsp90 has been explored as an intervention strategy against important human diseases such as cancer, malaria and other protozoan diseases. The ATP binding N-terminal domain (NTD), has been explored as the target domain for inhibition of Hsp90 using competitive inhibitors of ATP. Several chemical classes of Hsp90 inhibitors are known, including ansamycins, macrolides, purines, pyrazoles, and coumarin antibiotics. However, many inhibitors are observed to be toxic, less soluble and unstable. Hence, there is a requirement for new approach to design inhibitors which are more soluble and less toxic and serve as effective therapeutic drugs.inhibitors are observed to be toxic, less soluble and unstable. Hence, there is a requirement for new approach to design inhibitors which are more soluble and less toxic and serve as effective therapeutic drugs. The work presented in this thesis mainly concerns with the structural studies and biochemical and biophysical characterization of Hsp90 from two different sources viz. Dictyostelium discoideum, a cellular slime mould and a plant source Oryza sativa (rice). The structural analyses of these two proteins have been carried out by X-ray crystallography. Though yeast has been explored extensively as a model system to understand the different roles of Hsp90, it lacks the various signalling pathways essential for growth and development present in case of higher eukaryotes. D. discoideum has been employed as a model system to understand multicellular development, which occurs in response to starvation induced stress. D. discoideum has the advantages due to its ease of manipulation. The organism's genome also shows many signalling pathway for growth and differentiation that are conserved between D. discoideum and mammals. With this motivation, we have studied several structural aspects of the cytosolic isoform of Hsp90 from D. discoideum called HspD. HspD was also observed to play a role in the multicellular development of D. discoideum. It has been demonstrated that the treatment of D. discoideum with inhibitors like Geldanamycin or Radicicol causes an arrest in the multicellular development at the mound stage, and the few which escaped this arrest gave rise to abnormal fruiting bodies. A subset of the proteins involved in this mound arrest phenotype, were observed to have homologs in humans, which are clients of Hsp90. Therefore, a structural perspective of HspD can aid in better understanding of the role of this protein in the organism, as well as, elucidate any structural differences observed as compared to other species, which may have an impact on its activity. Studies on the physiological role of Hsp90 in plants began much later as compared to fungi and humans. In plants Hsp90 are involved in various abiotic stress responses. In addition, their roles have also been implicated in plant growth and development, innate immune response and buffering genetic variations. However, the molecular mechanisms of these various actions are not clearly understood. Also, the structural aspects of plant Hsp90 are yet to be explored. The structure of the NTD of Hsp90 from barley is the only one available from a plant source till now. We have initiated the studies on rice Hsp90 with the objective to understand the mechanism of Hsp90 in plants, which may aid in improving stress tolerance in plants. The thesis has been divided into five chapters. The first chapter introduces the various aspects of Hsp90 protein. The chapter starts with a general overview of concept of molecular chaperones and describes briefly the different classes of molecular chaperones. This is followed by a detailed description of different aspects of Hsp90 with main emphasis on the structure and its conformational flexibility. The chapter describes the association of Hsp90 with other accessory proteins like cochaperones and its interaction with its substrate proteins and explains the functional significance of Hsp90 as a drug target and the need for the development of new class of inhibitors, followed by the significance of the study of Hsp90 in the two model systems (D. discoideum and rice) chosen to be studied. The second chapter gives a brief overview of the principles behind the different experimental methods employed during the course of this research, which includes the tools of X-ray crystallography and other biochemical and biophysical techniques employed for the characterization of the protein. Chapter 3 describes the crystal structure of NTD of Hsp90 from D. discoideum. The structure of NTD was solved in two different native (ligand-free) forms viz. monoclinic and hexagonal. The two forms differed in local structural rearrangement of a segment of NTD known as the lid region. The lid region in the hexagonal form showed a shift in its position as compared to the other solved structures of NTD. The structure of NTD was also solved in complex with various ligands which include ADP, substrate analogs and an inhibitor molecule. A comparison of all the structures showed that the overall structure is well-conserved. One of the crystal structures of NTD showed a heptapeptide (part of the vector) bound at the active site. The peptide was observed to make several complementary interactions with the residues of the ATP binding pocket and retain several interactions which the nucleotide makes with the NTD. The NTD showed subtle conformational differences when compared with the NTD of Hsp90 from yeast. Chapter 4 details the structural and functional characteristics of full length Hsp90 protein from D. discoideum. Due to the large size and flexibility, the full length protein did not crystallize in spite of several attempts. Hence, HspD was studied using different solution studies like Small Angle X-ray Scattering (SAXS) and Dynamic Light Scattering (DLS). Both the studies showed the presence of higher oligomers. The SAXS data showed the presence of tetramers and hexamers while, the addition of the ligand shifts the protein from a dimer to a higher oligomer as observed from DLS studies. The chapter also describes the study of interaction of HspD with a cochaperone protein p23. The interactions were studied using ITC, which showed a strong binding. The ATPase activity was also evaluated in the presence of increasing concentrations of p23, which was observed to decline with increasing concentrations of p23. In chapter 5, we describe the biochemical characterization of Hsp90 from Oryza sativa (rice) and the crystallographic analysis of its NTD. Binding of the rice Hsp90 to ATP and an inhibitor were studied by fluorescence. The ATPase activity of rice Hsp90 was checked by radioactive assay and the protein was observed to be active. The NTD of rice Hsp90 crystallized as a monomer in complex with a substrate analog AMPPCP and the structure was determined.
180

Protein Engineering and Stabilization of HIV-1 Envelope Glycoprotein

Kesavardana, Sannula January 2014 (has links) (PDF)
A number of viral diseases such as Hepatitis B, small pox, measles, rubella and polio have effective vaccines to control or eradicate them. HIV-1 is a lentivirus which infects human immune cells and leads to the disease called AIDS (Acquired Immuno Deficiency Syndrome). Despite much effort since the three decades of its discovery, there is no effective vaccine against HIV-1. The envelope glycoprotein of HIV-1 is the most accessible protein on the virion surface and is essential for HIV-1 infection. Thus, this protein is the primary target for HIV-1 vaccine design. However, HIV-1 has acquired numerous immune evasive mechanisms to escape from the human immune system. Various factors such as high variability of the envelope sequence, presence of immune dominant variable loop regions, extensive glycosylation which masks conserved epitopes on the envelope, weak non-covalent interactions between gp120 and gp41 subunits of the envelope and the metastable nature of the envelope hinder the development of an effective vaccine against HIV-1. Various approaches have been carried out to design immunogens based on the envelope glycoprotein but so far none of these have succeeded in elicitation of a broad neutralizing antibody response. In chapter 1, brief descriptions of the HIV-1 epidemic, structural and genomic organization of HIV-1 along with the difficulties faced and progress in the development of an HIV-1 vaccine are described. HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers. The gp41 subunit in the native, pre-fusion trimeric Env exists in a metastable conformation and attains a stable post-fusion six helix bundle (6HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives fusion of viral and cellular membranes. The metastable nature of gp41 drives the equilibrium towards the post-fusion conformation which favours shedding of gp120 and formation of the gp41 six helix bundle remnants from the Env trimer. These dissociated products display non-neutralizing epitopes to the immune system to drive non-neutralizing antibody responses. Design and purification of Env glycoprotein in its native trimeric form is challenging due to the instability of the functional HIV-1 native Env trimer. In chapter 2, we describe our attempts to stabilize native Env trimers by incorporation of mutations at the NHR:CHR interface that disrupt the post-fusion 6HB of gp41. The mutations V570D and I573D stabilize native JRFL Env and occlude non-neutralizing epitopes to a greater extent than the previously identified I559P mutation that it is at the interface of the NHR trimers in the 6HB. The mutations prevent sCD4 induced gp120 shedding and 6HB formation. The data suggest that positions 570 and 573 are surface proximal in the native Env. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the post fusion 6HB conformation. These mutations should enhance the exposure of native Env forms to the immune system and therefore can be used to stabilize Env in a DNA vaccine format. In previous studies, a disulfide bond was engineered between gp120 and gp41 of Env to stabilize the interactions between them (SOS gp140). An I559P mutation was also introduced to stabilize the native gp41 conformation in the context of disulfide engineered Env (SOSIP gp140). The purified, soluble SOSIP gp140 immunogens were trimeric and cleaved properly. However, these immunogens failed to elicit broad neutralizing responses. The SOSIP gp140 immunogens appear to be good conformational mimics of the native trimeric Env. Thus, it is important to understand the details of the conformation and antigenic nature of SOSIP Env to further assist the design of Env immunogens in a native-like conformation. In chapter 3, we expressed JRFL-SOSIP Env on the cell surface and probed with various gp120 and gp41 specific antibodies to investigate whether this Env protein mimics the native like Env conformation. We show that introduction of a disulfide bond between gp120 and gp41 perturbs the native Env conformation, though this effect is partially alleviated by furin expression. The introduction of the V570D mutation instead of the I559P mutation partially restored the native like conformation of disulfide engineered Env. Proper cleavage of the Env to gp120 and gp41 is essential for the formation of native Env conformation. Uncleaved Env attains non-native forms and binds to non-neutralizing antibodies. To overcome inefficient cleavage problems, we co-expressed gp120 and gp41 genes on separate plasmids in mammalian cells and monitored the formation of native like Env complexes on the cell surface. We observed a fraction of native-like Env complexes on the cell surface when gp120 and gp41 with the V570D mutation are co¬expressed. We also describe the expression of Env with a self-cleavable 2A peptide between gp120 and gp41-V570D. We conclude that co-expression of gp120 and gp41 to form native like Env complexes is possible. HIV-1 Env trimeric immunogens are believed to be better immunogens than monomeric gp120. The trimeric Env immunogens designed so far, elicited marginally better neutralizing antibody response than monomeric gp120. However, these immunogens failed to elicit antibodies which could neutralize multiple primary HIV-1 isolates. Thus, it is possible that these immunogens have failed to mimic the native Env conformation. Cryo-EM and crystal structures of Env suggested that three gp120 monomers are held together at the apex of the Env trimer and the V1V2 regions of each gp120 monomer contribute to this trimeric interface. It was also shown that two broadly neutralizing antibodies (PG9 and PG16) bind to quaternary epitopes formed by V1V2 regions. Based on these observations, we hypothesized that insertion of heterologous trimerization domains into V1V2 loops might help in the formation of native like gp120 trimers. In chapter 4, two different trimerization domains (6-helix bundle and foldon trimerization domains) were inserted at the V1 loop of gp120 and C1 and C5 regions of gp120 were deleted to reduce the conformational flexibility of gp120. The resulting constructs were not trimeric and lost binding to trimer specific antibodies, PG9 and PG16. Due to their large distances between N and C-termini, these trimerization domains might have altered the local conformation of V1V2 regions and destabilized gp120 trimer formation. Interestingly, introduction of a trimerization domain (hCMP) at the C-terminus of C1 and C5 deleted gp120 (gp120-hCMP-21), led to the formation of native-like trimers which bound to both PG9 and PG16 antibodies. These results suggest that it may be difficult to trimerize gp120 by insertion of heterologous trimerization domains into the V1V2 loop and that conformational integrity of the V1V2 region is essential for the formation of trimeric gp120 interface. V1V2 regions of gp120 form quaternary epitopes on the Env trimer and are target for several broadly neutralizing antibodies. Moreover, these regions are important for the formation of the gp120 trimeric interface in the Env. In chapter 4, we show that insertion of heterologous trimerization domains at the V1 loop failed to form native like gp120 trimers. To further investigate this issue, in chapter 5, we made cyclic permutants of the gp120 molecule to create new N and C-termini at the V1 or V2 loop regions. This allowed the insertion of heterologous trimerization domains at these loop regions without affecting the folding and stability of gp120. The hCMP trimerization domain was introduced at the N-terminus of cyclically permuted gp120 (V1cyc and V2cyc). The resulting cyclic permutants were trimeric and retained binding to several broadly neutralizing antibodies. These cyclic permutants showed 10-20 fold increased binding to quaternary epitope specific neutralizing antibodies PG9 and PGT 145. CD4 binding site directed broadly neutralizing antibodies b12 and VRC01 also showed increased affinities to these cyclic permutants. Immunization of guinea pigs with cyclic permutants elicited broad neutralizing antibody response to Tier-1 and Tier-2 HIV-1 isolates with substantially higher titers than the corresponding monomeric gp120 immunogens. The data demonstrate that cyclic permutation of gp120 did not affect the structural and functional properties of gp120. It is possible to elicit broadly neutralizing sera against HIV-1 using cyclically permuted gp120 trimers in small animals. Among several proposed cryo-EM tomography structures of trimeric Env, some suggested that the V1V2 loop regions of gp120 are located close to the trimer interface while some other structures suggested that the V1V2 loop regions of gp120 are located far from the trimer axis. The present study supports Env models in which the V1V2 loops are proximal to the trimer interface. This has recently been confirmed in high resolution cryo-EM and crystal structures of HIV-1 gp140 derivatives. HIV-1 Env subunit gp120 has 50% of its molecular mass comprised of glycans which shield Env from immune recognition. Env has approximately 25 glycosylation sites of which ~4 are located in the inner domain, ~7-8 in the V1/V2 and V3 loops and the rest in the outer domain (OD). Earlier reports suggested that the glycans are indispensable for proper folding of Env and a certain level of glycan coverage is essential for maintaining infectivity of the virion. In chapter 6, we investigated the effect of removal of glycans from core gp120 on the infectivity of the HIV-1 and on the recognition of Env by various broadly neutralizing antibodies (bNAbs). We mutated the glycosylation sites in core gp120 to the second most frequent amino acids based on multiple sequence alignment. Pseudoviral infectivity assays and mammalian cell surface display experiments show that in the context of gp160, all core gp120 glycans are dispensable for viral infectivity and for recognition of bNAbs. We also show that deglycosylated molecules can serve as a starting point to re-introduce epitopes for specific glycan dependent bNAbs. Several of the constructs will also be useful for epitope mapping and Env structural characterization. Glycosylation of Env is known to inhibit binding to germline precursors of known bNAbs. In this study we show that recognition of VRC01 germline-bNAb increases substantially with the progressive loss of glycans from JRFL pseudoviruses. This work has so far resulted in the following publications (mentioned in next page).

Page generated in 0.0976 seconds