• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complexes de coordination, matériaux moléculaires et dispositifs électroniques commutables intégrant le système photochrome diméthyldihydropyrène /cyclophanediène / Coordination complexes, molecular materials and electronic switching devices containing the dimethyldihydropyrene / cyclophanediene photochrome

Roldan, Diego Antonio 25 October 2013 (has links)
Ce mémoire est consacré à la conception et la caractérisation de molécules, matériaux et dispositifs électroniques commutables incorporant le système photochrome diméthyldihydropyrène (DHP) / cyclophanediène (CPD). La première partie est dédiée à la synthèse et à la caractérisation de photochromes originaux basés sur l'unité diméthyldihydropyrène. En particulier, la modification chimique de ce motif par des groupements électroattracteurs de type pyridinium induit une nette amélioration des cinétiques de conversion photoinduites tout en constituant une unité aisément fonctionnalisable. Dans une seconde partie, le motif photochrome est associé à des complexes métalliques dérivés du ligand terpyridine qui confèrent des propriétés rédox à l'architecture moléculaire. Ces assemblages sont mis en œuvre pour la conception de films minces organisés obtenus par auto-assemblage de métallopolymères sur des surfaces solides. Les complexes et les films étudiés possèdent des propriétés photochromes et une activité rédox particulièrement prometteuses pour la conception de matériaux et dispositifs moléculaires multicommutables. Enfin, nous présentons l'étude de la conductance des isomères DHP et CPD. Un dispositif électronique à molécule unique a ainsi été mis en œuvre en utilisant le motif photochrome fonctionnalisé par deux unités pyridine, utilisées comme fonctions d'ancrage dans le dispositif. Il apparaît que l'isomère DHP possède une conductance d'environ quatre ordres de grandeur supérieurs à celle de l'isomère CPD correspondant. Ces deux états peuvent être commutés de manière très reproductible par application de stimulus optiques et thermiques. / This thesis is devoted to the design and characterization of switchable molecular systems (molecules, materials and electronic devices) incorporating the dimethyldihydropyrene / cyclophanediene (DHP/CPD) photochromic couple. The first part deals with the synthesis and characterization of original photochromic molecules based on the dimethyldihydropyrene unit. In particular, the chemical functionalisation of these molecular systems with electron-withdrawal pyridinium groups leads to an improvement of the kinetics of photo-induced conversion while providing an easily functionalizable unit, for example with metal cations complexing units. In the second part, the photochromic core is covalently linked with metal complexes based on terpyridine derivatives, conferring redox-active properties to the molecular architecture. These assemblies are applied for the design of organized thin films obtained by self-assembly of metallopolymers on solid surfaces. The model complexes and films display photochromic properties and redox activity particularly promising for the design of responsive materials and molecular devices. Finally, we present the study of the conductance of the isomers DHP and CPD. A single molecule electronic device in which individual molecules are utilized as active electronic components has been implemented using the photochromic group functionalized with two pyridine units, used as anchoring functions. It appears that the DHP isomer has a conductance of about four orders of magnitude higher than the corresponding isomer CPD. These two states can be switched very reproducibly and reversibly upon application of optical and thermal stimulus.
2

Molecular Design for Nonlinear Optical Materials and Molecular Interferometers Using Quantum Chemical Computations

Xiao, Dequan January 2009 (has links)
<p>Quantum chemical computations provide convenient and effective ways for molecular design using computers. In this dissertation, the molecular designs of optimal nonlinear optical (NLO) materials were investigated through three aspects. First, an inverse molecular design method was developed using a linear combination of atomic potential approach based on a Hückel-like tight-binding framework, and the optimizations of NLO properties were shown to be both efficient and effective. Second, for molecules with large first-hyperpolarizabilities, a new donor-carbon-nanotube paradigm was proposed and analyzed. Third, frequency-dependent first-hyperpolarizabilities were predicted and interpreted based on experimental linear absorption spectra and Thomas-Kuhn sum rules. Finally, molecular interferometers were designed to control charge-transfer using vibrational excitation. In particular, an ab initio vibronic pathway analysis was developed to describe inelastic electron tunneling, and the mechanism of vibronic pathway interferences was explored.</p> / Dissertation
3

Quantum Transport Through Carbon Nanotubes Functionalized With Antiferromagnetic Molecules

Schnee, Michael 12 August 2019 (has links)
The subject of this thesis is to study the interaction between carbon nanotubes (CNTs) and antiferromagnetic tetrametallic molecules attached to them. By employing quantum transport measurements, the sensitivity to sense the interactions is greatly increased, because the quantum dot is very susceptible to changes in its environment. The properties of carbon nanotubes can be altered by chemical functionalization with the aforementioned molecules, where the attachment is performed covalently via a ligand exchange with the CNT. The thesis is partitioned into two main parts: the first part presents experiments performed on tetramanganese functionalized CNTs, whereas for the second similar studies are conducted, except manganese is replaced by cobalt. Both complexes exhibit an antiferromagnetic ground state, yet the metal spin of manganese (S=5/2) is reduced to S=3/2 for cobalt. Additionally, an altered device preparation has been employed during the second part, leading to a strong suppression of the background signal. Quantum transport measurements at T=4K on manganese-functionalized CNTs show a very regular pattern of Coulomb diamonds, indicating only a mild disturbance of the quantum dot's electron system by the covalent bond. Moreover, the charging energy reveals a wave function extending over the entire device dimensions. However, at T=30mK in the tunneling current a strong noise emerges, when repeatedly measuring over an hour while keeping external biases constant. Additionally, these time traces are superimposed by a long-term background, which is removed by a correction algorithm plus a subsequent digitization. The remaining signal reveals a random telegraph signal (RTS) which is extensively studied and from its statistics the equivalent temperature of T=654mK for the excitation of the system is extracted. The quantum transport experiments conducted on cobalt-functionalized CNTs show a much better data quality of the coulomb diamonds, which is ascribed to the alteration in the device's preparation. From the line shape of the Coulomb oscillations as well as from the Coulomb staircases an electron temperature of about T=500mK is extracted. Moreover, a magnetic field dependence of the stability diagrams is apparent, attributable to Zeeman splitting. The respective Landé factor of g=1.73 is, compared to similar CNT quantum dot systems, unusually low. It is as attributed to an increased spin-orbit interaction between the conduction electrons and the cobalt's nuclei. The respective time traces exhibit or lack an RTS signal, depending on their external biases. Regarding the Coulomb diamonds, an essential prerequisite for the occurrence of an RTS is the proximity to a resonance, which is equatable to a high sensitivity of the quantum dot detector. Considering the available energy, the underlying process that is the cause for the emergence of the RTS is ascertained to be an internal excitation of the antiferromagnetic states of the metallic core.

Page generated in 0.1048 seconds