• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation and Applications of Conjugated Microporous Polymeric Membranes

Zhou, Zongyao 03 1900 (has links)
Polymeric membranes typically possess a broad pore-size distribution that leads to much lower selectivity in molecular and ionic separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Recently, a novel type of conjugated microporous polymers (CMPs) has shown uniform pore size and high porosity. However, their brittleness nature has prevented them from preparing robust membranes and using in pressure-driven membrane processes. In this dissertation, we demonstrate the fabrication of robust polycarbazole-type conjugated microporous polymer membranes using an easy to scale-up electropolymerization strategy. The mechanical properties of the CMP membranes were greatly enhanced based on membrane structure optimization and molecular design. The prepared membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness and properties, yielding high molecular/ionic sieving performance. In addition, using the co-electropolymerization method, the CMP membranes achieve dual softness and functionalization adjustments. The membrane structure comprises rigid monomers to inherit the structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining the precise size sieving and the Donnan effect. The dual-adjustments result in the further enhancement of the CMP membranes in ionic sieving performance. Inspired by light-gated ion channels in living cells, we further develop a smart artificial light-gated ion channel membrane. The prepared CMP membranes, based on a conjugated microporous polymer (CMP) functionalized with azobenzene and precisely designed on the molecular level, show uniform pore channels and highly sensitive light-switchable response. The photoisomerization results in reversible geometric changes in pore channel size, leading to “on-off-on” light-control over the channels, which results in light-gated ion transport across the smart membrane. The softness adjustment, functionalization adjustment to CMP membranes, and the design of smart CMP membranes provide potential applications for this important category of polymer materials in the membrane field.
2

Modification électrochimique de l'interface liquide - liquide avec de la silice mésoporeuse / Electrochemical modification of the liquid - liquid interface with mesoporous silica

Poltorak, Lukasz 25 September 2015 (has links)
Ce travail combine l'électrochimie à l'interface liquide - liquide avec le procédé sol - gel pour la modification interfaciale avec de la silice mésoporeuse. Dans la première partie de ce travail, l’interface liquide – liquide macroscopique a été utilisée pour séparer la solution aqueuse de l'espèce de précurseur de silice hydrolysées (tétraéthoxysilane (TEOS)) de l'agent tensioactif cationique (cethyltrimethylammonium (CTA+) qui a agi comme un template et a été dissous dans le dichloroéthane. Le dépôt de matériau de silice a été déclenchée par le transfert du CTA+ à partir de la phase organique vers la phase aqueuse. CTA+ qui a transféré à la phase aqueuse a catalysé la réaction de condensation de la silice sur l’interface liquide – liquide. Le dépôt de silice à des interfaces liquide – liquide miniaturisées était la deuxième partie de ce travail. Les dépôts stables sur le côté de l'interface ont été synthétisés in situ par voie électrochimique. La stabilité mécanique des dépôts de silice permis un traitement thermique de la silice. Basé sur les techniques d’imagerie (par exemple SEM) il a été constaté que les dépôts forment des hémisphères pour des temps plus long. La réaction interfaciale a également été suivie in situ par spectroscopie Raman confocale. Caractéristiques moléculaires de l'interface ont été modifiées de manière spectaculaire une fois les espèces CTA+ ont été transférés à la phase aqueuse. Les interfaces liquide – liquide miniaturisés et modifiés ont également été évaluée avec le transfert voltampérométrique / This work combines the electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) with the Sol – Gel process of silica leading to an interfacial modification with mesoporous silica using soft template. In the first part of this work the macroscopic liquid – liquid interface was employed to separate the aqueous solution of the hydrolyzed silica precursor species (tetraethoxysilane (TEOS)) from the cationic surfactant (cethyltrimethylammonium (CTA+)) dissolved in the dichloroethane. The silica material deposition was controlled by the electrochemical CTA+ transfer from the organic to the aqueous phase. Template transferred to the aqueous phase catalyzed the condensation reaction and self-assembly resulting in silica deposition at the interface. Silica deposition at the miniaturized ITIES (membranes supporting array of micrometer in diameter pores were used in this regard) was the second part of this work. Silica interfacial synthesis performed in situ resulted in stable deposits growing on the aqueous side of the interface. Mechanical stability of the supported silica deposits allowed further processing – silica material was cured. Based on imaginary techniques (e.g. SEM) it was found that deposits forms hemispheres for longer experimental time scales. Interfacial reaction was also followed with in situ confocal Raman spectroscopy. Molecular characteristics of the interface were changed dramatically once CTA+ species were transferred to the aqueous phase. Array of microITIES modified with silica was also assessed by ion transfer voltammetry

Page generated in 0.0869 seconds