Spelling suggestions: "subject:"2oment invariants"" "subject:"2oment nvariants""
11 |
Image Based Attitude And Position Estimation Using Moment FunctionsMukundan, R 07 1900 (has links) (PDF)
No description available.
|
12 |
Reducing Occlusion in Cinema Databases through Feature-Centric VisualizationsBujack, Roxana, Rogers, David H., Ahrens, James 25 January 2019 (has links)
In modern supercomputer architectures, the I/O capabilities do not keep up with the computational speed. Image-based techniques are one very promising approach to a scalable output format for visual analysis, in which a reduced output that corresponds to the visible state of the simulation is rendered in-situ and stored to disk. These techniques can support interactive exploration of the data through image compositing and other methods, but automatic methods of highlighting data and reducing clutter can make these methods more effective. In this paper, we suggest a method of assisted exploration through
the combination of feature-centric analysis with image space techniques and show how the reduction of the data to features of interest reduces occlusion in the output for a set of example applications.
|
13 |
Umělá neuronová síť RCE / Artificial neural network RCEMaceček, Aleš January 2013 (has links)
This paper is focused on an artificial neural network RCE, especially describing the topology, properties and learning algorithm of the network. This paper describes program uTeachRCE developed for learning the RCE network and program RCEin3D, which is created to visualize the RCE network in 3D space. The RCE network is compared with a multilayer neural network with a learning algorithm backpropagation in the practical application of recognition letters. For a descriptions of the letters were chosen moments invariant to rotation, translation and scaling image.
|
14 |
Orientation Invariant Pattern Detection in Vector Fields with Clifford Algebra and Moment InvariantsBujack, Roxana 16 December 2014 (has links)
The goal of this thesis is the development of a fast and robust algorithm that is able to detect patterns in flow fields independent from their orientation and adequately visualize the results for a human user.
This thesis is an interdisciplinary work in the field of vector field visualization and the field of pattern recognition.
A vector field can be best imagined as an area or a volume containing a lot of arrows. The direction of the arrow describes the direction of a flow or force at the point where it starts and the length its velocity or strength.
This builds a bridge to vector field visualization, because drawing these arrows is one of the fundamental techniques to illustrate a vector field. The main challenge of vector field visualization is to decide which of them should be drawn. If you do not draw enough arrows, you may miss the feature you are interested in. If you draw too many arrows, your image will be black all over.
We assume that the user is interested in a certain feature of the vector field: a certain pattern. To prevent clutter and occlusion of the interesting parts, we first look for this pattern and then apply a visualization that emphasizes its occurrences.
In general, the user wants to find all instances of the interesting pattern, no matter if they are smaller or bigger, weaker or stronger or oriented in some other direction than his reference input pattern. But looking for all these transformed versions would take far too long. That is why, we look for an algorithm that detects the occurrences of the pattern independent from these transformations.
In the second part of this thesis, we work with moment invariants.
Moments are the projections of a function to a function space basis. In order to compare the functions, it is sufficient to compare their moments.
Normalization is the act of transforming a function into a predefined standard position.
Moment invariants are characteristic numbers like fingerprints that are constructed from moments and do not change under certain transformations. They can be produced by normalization, because if all the functions are in one standard position, their prior position has no influence on their normalized moments.
With this technique, we were able to solve the pattern detection task for 2D and 3D flow fields by mathematically proving the invariance of the moments with respect to translation, rotation, and scaling. In practical applications, this invariance is disturbed by the discretization. We applied our method to several analytic and real world data sets and showed that it works on discrete fields in a robust way.
|
15 |
Pokročilé momentové metody pro analýzu obrazu / Advanced Moment-Based Methods for Image AnalysisHöschl, Cyril January 2018 (has links)
The Thesis consists of an introduction and four papers that contribute to the research of image moments and moment invariants. The first two papers focus on rectangular decomposition algorithms that rapidly speed up the moment calculations. The other two papers present a design of new moment invariants. We present a comparative study of cutting edge methods for the decomposition of 2D binary images, including original implementations of all the methods. For 3D binary images, finding the optimal decomposition is an NP-complete problem, hence a polynomial-time heuristic needs to be developed. We propose a sub-optimal algorithm that outperforms other state of the art approximations. Additionally, we propose a new form of blur invariants that are derived by means of projection operators in a Fourier domain, which improves mainly the discrimination power of the features. Furthermore, we propose new moment-based features that are tolerant to additive Gaussian image noise and we show by extensive image retrieval experiments that the proposed features are robust and outperform other commonly used methods.
|
16 |
Rehaussement et détection des attributs sismiques 3D par techniques avancées d'analyse d'images / 3D Seismic Attributes Enhancement and Detection by Advanced Technology of Image AnalysisLi, Gengxiang 19 April 2012 (has links)
Les Moments ont été largement utilisés dans la reconnaissance de formes et dans le traitement d'image. Dans cette thèse, nous concentrons notre attention sur les 3D moments orthogonaux de Gauss-Hermite, les moments invariants 2D et 3D de Gauss-Hermite, l'algorithme rapide de l'attribut de cohérence et les applications de l'interprétation sismique en utilisant la méthode des moments.Nous étudions les méthodes de suivi automatique d'horizon sismique à partir de moments de Gauss-Hermite en cas de 1D et de 3D. Nous introduisons une approche basée sur une étude multi-échelle des moments invariants. Les résultats expérimentaux montrent que la méthode des moments 3D de Gauss-Hermite est plus performante que les autres algorithmes populaires.Nous avons également abordé l'analyse des faciès sismiques basée sur les caractéristiques du vecteur à partir des moments 3D de Gauss -Hermite, et la méthode de Cartes Auto-organisatrices avec techniques de visualisation de données. L'excellent résultat de l'analyse des faciès montre que l'environnement intégré donne une meilleure performance dans l'interprétation de la structure des clusters.Enfin, nous introduisons le traitement parallèle et la visualisation de volume. En profitant des nouvelles performances par les technologies multi-threading et multi-cœurs dans le traitement et l'interprétation de données sismiques, nous calculons efficacement des attributs sismiques et nous suivons l'horizon. Nous discutons également l'algorithme de rendu de volume basé sur le moteur Open-Scene-Graph qui permet de mieux comprendre la structure de données sismiques. / Moments have been extensively used in pattern recognition and image processing. In this thesis, we focus our attention on the study of 3D orthogonal Gaussian-Hermite moments, 2D and 3D Gaussian-Hermite moment invariants, fast algorithm of coherency attribute, and applications of seismic interpretation using moments methodology.We conduct seismic horizon auto-tracking methods from Gaussian-Hermite moments and moment invariants. We introduce multi-scale moment invariants approach. The experimental results show that method of 3D Gaussian-Hermite moments performs better than the most popular methods.We also approach seismic facies analysis based on feature vectors from 3D Gaussian-Hermite moments, and Self-Organizing Maps method with data visualization techniques. The excellent result shows that the integrated environment gives the best performance in interpreting the correct cluster structure.Finally, we introduce the parallel processing and volume visualization. Taking advantage of new performances by multi-threading and multi-cores technologies into seismic interpretation, we efficiently compute the seismic attributes and track the horizon. We also discuss volume rendering algorithm based on Open-Scene-Graph engine which provides better insight into the structure of seismic data.
|
17 |
Rehaussement et détection des attributs sismiques 3D par techniques avancées d'analyse d'imagesLi, Gengxiang 19 April 2012 (has links) (PDF)
Les Moments ont été largement utilisés dans la reconnaissance de formes et dans le traitement d'image. Dans cette thèse, nous concentrons notre attention sur les 3D moments orthogonaux de Gauss-Hermite, les moments invariants 2D et 3D de Gauss-Hermite, l'algorithme rapide de l'attribut de cohérence et les applications de l'interprétation sismique en utilisant la méthode des moments.Nous étudions les méthodes de suivi automatique d'horizon sismique à partir de moments de Gauss-Hermite en cas de 1D et de 3D. Nous introduisons une approche basée sur une étude multi-échelle des moments invariants. Les résultats expérimentaux montrent que la méthode des moments 3D de Gauss-Hermite est plus performante que les autres algorithmes populaires.Nous avons également abordé l'analyse des faciès sismiques basée sur les caractéristiques du vecteur à partir des moments 3D de Gauss -Hermite, et la méthode de Cartes Auto-organisatrices avec techniques de visualisation de données. L'excellent résultat de l'analyse des faciès montre que l'environnement intégré donne une meilleure performance dans l'interprétation de la structure des clusters.Enfin, nous introduisons le traitement parallèle et la visualisation de volume. En profitant des nouvelles performances par les technologies multi-threading et multi-cœurs dans le traitement et l'interprétation de données sismiques, nous calculons efficacement des attributs sismiques et nous suivons l'horizon. Nous discutons également l'algorithme de rendu de volume basé sur le moteur Open-Scene-Graph qui permet de mieux comprendre la structure de données sismiques.
|
Page generated in 0.0828 seconds