• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 16
  • 1
  • Tagged with
  • 33
  • 33
  • 13
  • 13
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du couplage en espace libre des modes OAM dans une fibre à cœur en anneau pour le multiplexage spatial

Gouin, Ariane 13 October 2023 (has links)
Titre de l'écran-titre (visionné le 10 octobre 2023) / Les faisceaux de lumière issus des modes du moment cinétique d'orbite (OAM) sont caractérisés par un front de phase hélicoïdal. On peut les utiliser pour faire du multiplexage de modes (MDM), c'est-à-dire combiner des signaux indépendants d'ordres différents en un seul signal composite destiné à être transmis sur une voie commune, typiquement une fibre à coeur en anneau (RCF). L'intérêt est d'augmenter la capacité des réseaux de communication tout en diminuant la complexité des systèmes de traitement de signaux (DSP), et par le fait même, les coûts monétaires et énergétiques qui leur sont associés. On vise à donc maximiser le nombre de modes OAM efficacement multiplexés dans une RCF. Ce mémoire aborde cette problématique en faisant l'étude du couplage des modes OAM du côté du transmetteur. On pose d'abord le cadre théorique des modes OAM de la lumière. On expose ensuite les éléments de base du système à l'étude : la génération des modes OAM par q-plate, les caractéristiques de design de la RCF, et le multiplexage en espace libre. On propose une configuration de multiplexeur à 16 modes OAM en espace libre. Une fois le contexte de la problématique présenté, on s'intéresse à la compréhension du comportement de propagation des faisceaux OAM en espace libre. On en fait la caractérisation expérimentale pour quatre grandeurs d'ordre OAM. On présente aussi trois méthodes de modélisation de ce comportement et on compare les résultats obtenus avec les mesures en laboratoire. À l'issue de l'analyse comparative, on choisit la méthode qui nous apparaît la mieux adaptée à la problématique. Les faisceaux OAM générés par q-plates possèdent naturellement une divergence. Leur taille et leur divergence dépendent de la grandeur d'ordre du mode OAM. En se basant sur les simulations des faisceaux OAM ainsi que sur des concepts théoriques de propagation des faisceaux gaussiens, on propose un système optique permettant de manipuler la taille et la divergence des faisceaux OAM en espace libre. On vérifie le design par des mesures expérimentales. Finalement, les performances du système optique proposé sont démontrées en optimisant et en mesurant l'efficacité de couplage de quatre modes OAM de grandeur d'ordre différente à l'intérieur de la même RCF.
2

Integrated optical phased array for scalable vortex beam multiplexing

Chen, Yuxuan 29 June 2023 (has links)
Titre de l'écran-titre (visionné le 19 juin 2023) / Le multiplexage par répartition spatiale (SDM) est une technique prometteuse pour augmenter la capacité des systèmes. Elle offre un degré de liberté supplémentaire pour le multiplexage parallèle au temps, à la fréquence, à la polarisation et à la quadrature. La capacité réalisable du système est proportionnelle au nombre de canaux spatiaux. Le multiplexage modal dans une fibre à quelques modes (FMF) offre une densité d'information élevée pour le SDM et peut être combiné avec des fibres multicœurs pour augmenter encore plus la capacité de données. Les modes à moment orbital angulaire (OAM) ont l'avantage de supprimer les interactions entre les modes pendant la transmission par fibre, et conviennent donc pour les systèmes SDM afin de démontrer une capacité très élevée. L'utilisation de configurations en espace libre pour multiplexer les modes OAM exige une grande précision d'alignement et une faible perturbation. Le coût et l'espace nécessaires pour de tels montages augmentent linéairement avec le nombre de modes pris en charge. La plateforme de silicium sur isolant (SOI) offre la compacité, la robustesse et la compatibilité CMOS pour construire un multiplexeur OAM. Dans cette thèse, nous proposons et caractérisons un multiplexeur OAM basé sur un réseau optique à commande de phase sur la plateforme SOI. Nous démontrons le premier multiplexeur intégré qui génère directement des faisceaux OAM polarisés circulairement avec des composants sur puce, brisant le goulot d'étranglement de l'incompatibilité de polarisation dans le couplage puce-fibre OAM. Nous incorporons une capacité de réglage de l'intensité qui améliore considérablement la qualité de l'OAM en permettant une distribution uniforme de la puissance sur les antennes. Nous augmentons de 50% le nombre de modes pris en charge par rapport à l'état de l'art précédent et réduisons de 3dB le record de diaphonie dans le pire des cas. Notre dispositif fournit une solution évolutive pour la génération et le multiplexage OAM dans les systèmes SDM à ultra-haute capacité. Dans le premier chapitre, nous expliquons le principe de fonctionnement de notre circuit à réseau de phase. Nous fournissons des informations détaillées sur nos modèles de simulation pour nos sous-ensembles de composants intégrés et présentons notre méthodologie de calibration du circuit. Le deuxième chapitre présente un modèle de simulation général pour un générateur OAM basé sur un réseau de phase. Le modèle consiste en une méthode de matrice de transfert basée sur le calcul du champ électrique sur puce et la simulation de l'évolution du faisceau se propageant en espace libre. Nous donnons un exemple de la manière de procéder à l'optimisation des paramètres pour les lieus de transmission ciblés. Dans le troisième chapitre, nous démontrons expérimentalement, pour la première fois, un multiplexeur OAM qui génère et multiplexe directement des faisceau de type vortex polarisés circulairement sur SOI. Le dispositif comporte 17 antennes et supporte 14 canaux OAM, 7 dans chaque polarisation circulaire. Les pertes de la puce sont de 25dB, la diaphonie dans le pire des cas sont de -6dB et la bande passante est de 17 nm. Dans le quatrième chapitre, nous étudions, pour la première fois, l'impact de la non-uniformité de l'intensité entre les antennes et nous atténuons cette non-uniformité à l'aide de notre circuit d'accord de l'intensité. Nous démontrons 46 canaux OAM et réduisons avec succès la diaphonie dans le pire des cas à -17,2dB (modes les plus supportés et diaphonie la plus faible en tant que MUX OAM intégré). Les pertes du dispositif sont de 12dB, et la largeur de bande est d'environ 20 nm. / Space division multiplexing (SDM) is a promising technique for increasing the system capacity. It provides an extra degree of freedom for multiplexing parallel to the time, frequency, polarization, and quadrature. The achievable capacity of the system is proportional to the number of spatial channels. Modal multiplexing in a few-mode fiber (FMF) offers a high information density for SDM and can be combined with multicore fibers to increase data capacity further. The orbital angular momentum (OAM) modes have an advantage in suppressing mode interactions during fiber transmission, thus are suitable to be transmitted in SDM systems to demonstrate ultra-high capacity. Using free-space setups to multiplex OAM modes require high alignment precision and low perturbation. The cost and space needed for such setups scale linearly with the number of supported modes. Silicon-on-insulator (SOI) platform provides the compactness, robustness, and CMOS compatibility to build an OAM multiplexer. In this thesis, we propose and characterize an optical phased array-based OAM multiplexer on the SOI platform. We demonstrate the first integrated multiplexer that directly generates circularly polarized OAM beams with on-chip components, breaking the bottleneck on polarization incompatibility in chip-to-OAM fiber coupling. We incorporate an intensity tuning capability that substantially improves the OAM quality by enabling a uniform power distribution across the antennas. We increase the number of supported modes from previous state-of-the-art by 50% and reduce the worst-case crosstalk record by 3dB. Our device provides a scalable OAM generation and multiplexing solution in ultra-high-capacity SDM systems. In the first chapter, we explain the design principle of our phased array circuit. We provide detailed information about our simulation models for our integrated building blocks and present our calibration methodology of the circuit. The second chapter demonstrates a general simulation model for a phased array-based OAM generator. The model consists of a transfer matrix method based on on-chip electrical field calculation and the simulation of free-space propagation beam evolution. We give an example of how to conduct parameter optimization for target transmission links. In the third chapter, we experimentally demonstrate, for the first time, an OAM multiplexer that directly generates and multiplexes circularly polarized vortex on SOI. The device has 17 antennas and supports 14 OAM channels, 7 in each circular polarization. The loss of the chip is 25dB, the worst-case crosstalk is -6dB, and the band width is 17 nm. In the fourth chapter, we investigate, for the first time, the impact of intensity non-uniformity among antennas, and we mitigate the non-uniformity using our tuning circuit. We demonstrate 46 OAM channels and successfully reduce the worst-case crosstalk to -17.2dB (most supported modes and lowest crosstalk as integrated OAM MUX). The loss of the device is 12dB, and the band width is around 20 nm.
3

Modélisation et simulation numérique multi-échelle du transport cinétique électronique

Duclous, Roland 24 November 2009 (has links)
Ce manuscrit est dédié au transport relativiste cinétique sous influence de champs magnétiques, identifié comme obstacle pour la modélisation et la simulation intégrée, dans le cadre de la Fusion par Confinement Inertiel (FCI). Une réalisation importante concerne le développement d'un code déterministe de référence, 2Dx-3Dv, de type Maxwell-Fokker-Planck-Landau, permettant la prise en compte de fonctions de distribution à large degré d'anisotropie. Ce travail se situe à l'interface de l'analyse numérique, des mathématiques appliquées, et de la physique des plasmas. Un deuxième résultat marquant concerne la dérivation d'un modèle collisionel multi-échelle, pour le transport d'électrons relativistes dans la matière dense. Des processus importants sont mis en évidence pour la FCI, et une analogie est menée vis-à-vis des processus de transport collisionels connus en radiothérapie. Enfin, un modèle mésoscopique aux moments angulaires, avec fermeture entropique, a été dérivé et utilisé pour le dépôt de dose pour la radiothérapie. Des schémas numériques précis, d'ordre élevé, et robustes, ont été développé dans ce cadre. / This manuscript is dedicated to the relativistic kinetic transport, under the influence of the magnetic field, identified as a barrier for the modeling and integrated simulations, in the frame of the Inertial Confinement Fusion (ICF). An important achievement concerns the development of a deterministic, reference code, 2Dx-3Dv, of Maxwell-Fokker-Planck-Landau type, that permits the treatment of distribution functions with large anisotropy degree. This work is at the interface between the numerical analysis, applied mathematics, and plasma physics. Another milestone result concerns the derivation of a multi-scale, collisional model, for the transport of relativistic electrons in dense matter. A set of processes is demonstrated to be of importance for ICF, and an analogy is conducted with respect to well-known collisional transport processes in radiotherapy. Finally, a mesoscopic angular moment model, with entropic closure, is derived and employed for radiotherapy dose computation. High order precise and robust numerical schemes are then developed in this framework.
4

Controlled vortex lattices and non-classical light with microcavity polaritons / Réseaux de vortex contrôlés et états non-classiques de la lumière dans des polarisons de microcavité

Boulier, Thomas 25 November 2014 (has links)
Les polaritons sont des quasi-particules bosoniques venant du couplage fort entre des photons de cavité et des excitons confinés dans une hétérostructure semiconductrice. De par leur temps de vie très court et leur très fortes interactions, les polaritons sont un système idéal pour étudier des problèmes fondamentaux d’hydrodynamique quantique hors équilibre ainsi que des aspects plus appliqués d’optique quantique, comme l’implémentation de transistors opto-electroniques ultra-rapides ou la génération d’états non-classiques de la lumière.Ces deux thèmes sont traités dans cette thèse. Dans la première partie j’y dépeins plusieurs méthodes par lesquelles on injecte optiquement un moment angulaire donné dans un superfluide de polaritons, afin d’observer sa nucléation en plusieurs vortex élémentaires. L’impact de la géometrie, du désordre et de l’interaction nonlinéaire de type "polaritonpolariton" sont étudiés. Nous démontrons la conservation du moment angulaire dans le régime stationnaire malgré la nature hors équilibre et ouverte du système. Dans le régime linéaire, un reseau d’interférences contenant des singularités de phase (vortex optiques) est visible. Dans le régime nonlinéaire (superfluide), les interférences disparaissent et des vortex du même signe se forment en conséquence de la conservation du moment angulaire injecté. Enfin, en ajoutant une contrainte sur la géométrie du système nous avons créé de manière controlée un anneau stable de vortex élémentaire du même signe, ce qui pourrait ouvrir la voie à l’étude des interactions inter-vortex dans les fluides quantiques de lumière.Un autre aspect des polaritons sont les propriétés quantiques de la lumière qu’ils émettent. Dans la seconde partie de cette thèse, je décris une source améliorée de lumière comprimée en régime de variables continues dans des micropiliers semiconducteurs en régime de couplage fort. En effet, la génération de lumière comprimée et intriquée est un ingrédient crucial pour l’implémentation de protocoles en information quantique. Dans ce contexte, les matériaux semiconducteurs ont un grand potentiel pour la realization d’éléments sur puce opérant au niveau quantique. Ici, un mélange à quatre ondes dégénérées est obtenu en excitant le micro-pilier à incidence normale. Nous observons un comportement bistable et démontrons la génération de lumière comprimée près du point tournant de la courbe de bistabilité. La nature confinée de la géométrie du piller permet d’atteindre un taux de compression bien supérieur que dans les microcavités planaires, grâce aux niveaux d’énergies discrets protégés des excès de bruits. En analysant le bruit dans la lumière émise par les micro-piliers, nous obtenons une réduction du bruit d’intensité mesurée à 20,3%, et estimée à 35,8% après correction des pertes de détection. / Polaritons are bosonic quasiparticles coming from the strong coupling between photons and excitons in a solid-state semiconductor microcavity. Due to their short lifetime and their strong nonlinear interactions, polaritons are an ideal system to study fundamental problems of out-of-equilibrium quantum hydrodynamics as well as more applied problematic in quantum optics, such as the implementation of ultrafast opto-electronic switches or the generation of non-classical states of light.In this thesis the two themes are treated. In the first part of my thesis I will depict several schemes by which we optically inject a controlled angular momentum in a polartion superfluid, in order to observe its nucleation into elementary vortices. The impact of the geometry, disorder, and polariton-polariton nonlinear interactions is studied. We show the conservation of angular momentum in the steady state regime despite the open, out-of-equilibrium nature of the system. In the linear regime, an interference pattern containing phase defects is visible. In the nonlinear(superfluid) regime, the interference disappear and the vortices nucleate as a consequence of the angular momentum conservation. Finally, constraining the geometry we were able to create in a controlled way a stable ring of elementary vortices of the same sign, opening the way to the study of vortex-vortex interactions in quantum fluids of light.A second aspect of polaritons is the quantum properties of their emitted light. In the second part of the manuscript I describe a novel source of continuous-variable squeezed light in pillar-shaped semiconductor microcavities in the strong coupling regime. Indeed, the generation of squeezedand entangled light fields is a crucial ingredient for the implementation of quantum information protocols. In this context, semiconductor materials offer a strong potential for the implementation of on-chip devices operating at the quantum level. Here, degenerate polariton four-wave mixing is obtained by exciting the pillar at normal incidence. We observe a bistable behavior and we demonstrate the generation of squeezing near the turning point of the bistability curve. The confined pillar geometry allows for a larger amount of squeezing than planar microcavities due to the discrete energy levels protected from excess noise. By analyzing the noise of the emitted light we obtain a measured intensity squeezing of 20,3%, inferred to be 35,8% after corrections for losses in the detection setup.
5

Conception et caractérisation de fibres optiques à modes à moment angulaire orbital / Design and characterization of optical fiber for orbital angular momentum modes

Tandjè, Sourou Hugues Arsène 15 October 2019 (has links)
Les fibres optiques (qu’elles soient à saut ou à gradient d'indice) sont largement utilisées pour les liaisons longue (intercontinentale, dorsale optique terrestre) et courte portée (centre de données, réseau d'accès). Certaines fibres, appelées fibres optiques de spécialité, jouent également un rôle important dans d'autres domaines telles que la médecine (endoscopie par exemple), les capteurs, les applications au laser, etc. La multiplication constante des services Internet combinée à la croissance du nombre d'utilisateurs rend nécessaire l'augmentation de la capacité actuelle des réseaux à fibres optiques. Les fibres aujourd’hui installées et utilisées pour les transmissions à très haut débit utilisent uniquement le mode fondamental (noté LP01, dans l'approximation de faible guidage) pour transmettre les informations : on parle de fibres optiques monomodes. Comme ils atteignent maintenant la limite non-linéaire de Shannon, une des idées pour augmenter la capacité des réseaux optiques consiste à mettre en œuvre le multiplexage spatial (SDM) et à utiliser simultanément différents modes dans une fibre dite légèrement multimode (supportant généralement quelques dizaines de modes) ou une fibre multi-cœurs. Depuis 2010, plusieurs études ont été développées dans ce sens, principalement sur les fibres supportant les modes LP (Linéairement Polarisés) et, plus récemment, les modes OAM (moment angulaire orbital), c’est-à-dire des modes à polarisation circulaire et à phase hélicoïdale. Dans ce dernier cas, les propriétés de phase et de polarisation sont supposées limiter le couplage entre les modes. Ce travail de thèse porte sur la conception et la réalisation de fibres OAM présentant un couplage faible entre modes, pour une application au transport de données mais également pour une étude en photonique non-linéaire. Certaines des fibres étudiées sont des fibres à cœur annulaire fabriquées selon les méthodes de fabrication conventionnelles, présentant des rayons interne / externe et des indices d’anneau optimisés. Nous avons fabriqué de telles fibres à cœur annulaire toute solide dans le but de les appliquer pour une transmission MIMO simple en utilisant des modes OAM comme des canaux indépendants. Cependant, nous avons également conçu et fabriqué la première fibre à cristal photonique (PCF) avec un cœur annulaire quasi-circulaire, à faible perte par confinement et adaptée au guidage des modes OAM. Nous avons montré expérimentalement que les fibres fabriquées supportent les modes OAM et leurs matrices de transmission ont été mesurées. Nous avons également effectué des expérimentations préliminaires sur le décalage solitonique dans la fibre PCF supportant les modes OAM. / Optical fibers (step index and graded-index ones) are widely used for long-haul (intercontinental, terrestrial optical backbone) and short-reach (datacenter, access network) links. Some fibers called specialty optical fibers also play an important role in other applications like medicine (endoscopy for example), sensing, laser applications etc. The constant rise of Internet services combined to the growth of the number of Internet users makes it necessary to increase the current capacity of optical fiber networks. The fibers commercially used today for very high data rate transmissions use only the fundamental mode (denoted LP01, in the weakly guiding approximation) to transmit the information: there are known as single-mode fibers. As they are now reaching the so-called nonlinear Shannon limit, one of the ideas for increasing the capacity of fiber networks is to implement space-division multiplexing (SDM) and then simultaneously use different modes in a so-called few-mode fiber (fiber supporting typically dozens of modes) or a multicore fiber. Since 2010, several studies have been developed in this direction, mainly on fibers supporting LP (Linearly Polarized) modes and more recently OAM (Orbital Angular Momentum) modes, i.e. modes with helical phase and circular polarization. In this last case, phase and polarization properties are supposed to limit the coupling between modes. This PhD work deals with the design and the realization of OAM fibers presenting weak coupling between modes, for application to data transport but also for study in nonlinear photonics. Some of the fibers studied are annular core fibers made by conventional manufacturing methods, having internal / external radii and optimized ring refractive indices. We fabricated such all-solid ring-core fibers with the aim to apply them for simple MIMO transmission using OAM modes as independent channels. However, we also designed and manufactured the first photonic crystal fiber (PCF) with close-to-circular ring-core, low confinement loss and suitable for OAM mode guidance. We experimentally show that the fabricated fibers support OAM modes, and their transmission matrices have been measured. We also performed preliminary solitonic shifting experimentations in PCF fiber supporting OAM.
6

Le moment angulaire de la lumière en génération d'harmoniques d'ordre élevé / The angular momentum of light in high harmonic generation

Géneaux, Romain 13 December 2016 (has links)
Le moment angulaire est une quantité essentielle pour l'étude d'objets en interaction. Tout comme la matière, un rayonnement porte du moment angulaire. Il se décompose en deux composantes, moment angulaire de spin (MAS) et moment angulaire orbital (MAO). Chacune de ces composantes a des propriétés spécifiques et ont donné lieu à de nombreuses applications en utilisant de la lumière dans le domaine visible et infrarouge. Dans cette thèse, nous nous proposons d'étudier le comportement des deux types de moment angulaire de la lumière dans un processus très non-linéaire appelé génération d'harmoniques d'ordre élevé (GHOE). Dans ce processus physique connu depuis 1987, un laser infrarouge intense est focalisé dans un jet d'atomes ou de molécules, ce qui dans le bon régime d'intensité permet de générer un rayonnement à courte longueur d'onde (domaine extrême ultraviolet) et extrêmement bref (attoseconde, 1 as = 10⁻¹⁸ s). Nous commençons par décrire théoriquement ce processus, ainsi que définir de manière approfondie la notion de moment angulaire de la lumière. Nous étudions ensuite la GHOE à partir d'un faisceau infrarouge portant du MAO, ce qui nous permet d'obtenir une source unique, générant des impulsions lumineuses ultrabrève de moment angulaire orbital contrôlé et de longueur d'onde de l'ordre de 10nm. Nous étudions étudions la GHOE à partir de faisceaux portant du MAS. En utilisant une résonance du gaz de génération, nous parvenons à transmettre ce moment angulaire au rayonnement extrême ultraviolet. Ce rayonnement est ensuite utilisé pour mesurer des dichroïsmes circulaires de photoionisation dans des molécules chirales, mesures auparavant réservées aux sources synchrotrons. Ceci ouvre la voie à des mesures chirotpiques résolues en temps à l'échelle femto/attoseconde. / Angular momentum is an ubiquitous quantity in all areas of physics. Just like matter, radiation carries angular momentum. It can be decomposed in two parts, namely the spin angular momentum (SAM) and the orbital angular momentum (OAM). Each one of these components has very specific properties and lead to numerous applications using visible and infrared light. In this thesis, we study the behavior of these two types of light angular momentum in a very non-linear process called high harmonic generation (HHG). In this physical process known since 1987, an intense infrared laser is focused into an atomic or molecular gas jet, which in the right intensity regime allows to generate a radiation which has a short wavelength (extreme ultraviolet domain) and is extremely brief (attosecond, 1 as = 10⁻¹⁸ s).We begin by describing theoretically this process, as well as defining in depth the notion of light angular momentum. We then study HHG from an infrared laser carrying OAM. This allows to obtain an unique light source, generating ultrashort light pulses of controlled orbital angular momentum with a wavelength of the order of 10 nm. We then study GHOE from beams carrying MAS. Using a resonance from the generation gas, we manage to transfer this angular momentum to the emitted extreme ultraviolet radiation. This radiation is finally used to measure photoionisation circular dichroisms in chiral molecules, measurements previously restricted to synchrotron sources. This paves the way towards chiroptic time resolved measurement on a femto/attosecond timescale.
7

Design and modeling of optical fibers for spatial division multiplexing using the orbital angular momentum of light

Brunet, Charles 24 April 2018 (has links)
Les besoins toujours croissants en terme de transfert de données numériques poussent au développement de nouvelles technologies pour accroître la capacité des réseaux, notamment en ce qui concerne les réseaux de fibre optique. Parmi ces nouvelles technologies, le multiplexage spatial permet de multiplier la capacité des liens optiques actuels. Nous nous intéressons particulièrement à une forme de multiplexage spatial utilisant le moment cinétique orbital de la lumière comme base orthogonale pour séparer un certain nombre de canaux. Nous présentons d’abord les notions d’électromagnétisme et de physique nécessaires à la compréhension des développements ultérieurs. Les équations de Maxwell sont dérivées afin d’expliquer les modes scalaires et vectoriels de la fibre optique. Nous présentons également d’autres propriétés modales, soit la coupure des modes, et les indices de groupe et de dispersion. La notion de moment cinétique orbital est ensuite introduite, avec plus particulièrement ses applications dans le domaine des télécommunications. Dans une seconde partie, nous proposons la carte modale comme un outil pour aider au design des fibres optiques à quelques modes. Nous développons la solution vectorielle des équations de coupure des modes pour les fibres en anneau, puis nous généralisons ces équations pour tous les profils de fibres à trois couches. Enfin, nous donnons quelques exemples d’application de la carte modale. Dans la troisième partie, nous présentons des designs de fibres pour la transmission des modes avec un moment cinétique orbital. Les outils développés dans la seconde partie sont utilisés pour effectuer ces designs. Un premier design de fibre, caractérisé par un centre creux, est étudié et démontré. Puis un second design, une famille de fibres avec un profil en anneau, est étudié. Des mesures d’indice effectif et d’indice de groupe sont effectuées sur ces fibres. Les outils et les fibres développés auront permis une meilleure compréhension de la transmission dans la fibre optique des modes ayant un moment cinétique orbital. Nous espérons que ces avancements aideront à développer prochainement des systèmes de communications performants utilisant le multiplexage spatial. / The always increasing need for digital data bandwidth pushes the development of emerging technologies to increase network capacity, especially for optical fiber infrastructures. Among those technologies, spatial multiplexing is a promising way to multiply the capacity of current optical links. In this thesis, we are particularly interested in current spatial multiplexing using the orbital angular momentum of light as an orthogonal basis to distinguish between a few optical channels. We first introduce notions from electromagnetism and physic needed for the understanding of the later developments. We derive Maxwell’s equations describing scalar and vector modes of optical fiber. We also present other modal properties like mode cutoff, group index, and dispersion. Orbital angular momentum is briefly explained, with emphasis on its applications to optical communications. In the second part, we propose the modal map as a tool that can help in the design of few mode fibers. We develop the vectorial solution of the ring-core fiber cutoff equation, then we extend those equations to all varieties of three-layer fiber profiles. Finally, we give some examples of the use of the modal map. In the third part of this thesis, we propose few fiber designs for the transmission of modes with an orbital angular momentum. The tools that were developed in the second part of this thesis are now used in the design process of those fibers. A first fiber design, characterized by a hollow center, is studied and demonstrated. Then a second design, a family of ring-core fibers, is studied. Effective indexes and group indexes are measured on the fabricated fibers, and compared to numerical simulations. The tools and the fibers developed in this thesis allowed a deeper comprehension of the transmission of orbital angular momentum modes in fiber. We hope that those achievements will help in the development of next generation optical communication systems using spatial multiplexing.
8

Orbital angular momentum multiplexing for high-capacity intra-data center communication links

Banawan, Mai 19 March 2023 (has links)
Ces dernières années, le volume de trafic à l'intérieur des centres de données a considérablement augmenté. Par conséquent, nous avons besoin de solutions évolutives et efficaces appropriées à l'infrastructure de centre de données. Le multiplexage par division de mode (MDM) est un excellent candidat pour augmenter la capacité des liaisons optiques. Dans cette thèse, nous examinons les fibres à noyau annulaire (RCF) qui permettent la propagation des modes de moment angulaire orbital (OAM) pour le multiplexage. Nous montrons les avantages de l'utilisation des modes OAM par rapport aux autres solutions de multiplexage de mode. Dans notre première contribution, nous avons introduit un modèle numérique pour trouver les coefficients de couplage entre les modes OAM à cause de la déformation elliptique dans la fibre. Notre modèle prédit des observations expérimentales qui ne peuvent pas être observées avec les modèles de perturbation classiques. Nous avons utilisé le modèle pour comparer les performances de différentes conceptions de fibres. Dans la deuxième contribution, nous avons fabriqué une conception de fibre qui a été identifiée comme ayant un faible couplage à l'aide de notre modèle numérique. Nous avons caractérisé expérimentalement la perte dépendante du mode de la fibre. Nous minimisons la destruction des fibres lors de la caractérisation des pertes en fonction du mode en utilisant quatre longueurs de fibres fixes et examinons chaque mode de manière itérative. Nous avons utilisé un récepteur reprogrammable pour valider la pureté de l'excitation modale. Nous avons maximisé la pureté du mode lancé en optimisant la largeur et le diamètre du faisceau en espace libre à l'aide de la technique d'excitation du faisceau vortex parfait. Nous discutons de plusieurs défis auxquels nous avons été confrontés et démontrons les avantages de notre technique par rapport à d'autres techniques. La perte de notre fibre est acceptable pour les liaisons intra-centre de données. Dans notre troisième contribution, nous avons examiné les performances de transmission de données dans notre fibre. Nous avons comparé les performances de réception sans traitement MIMO (multiple-input multiple-output) (ni optique ni électronique) et la réception avec 2×2 MIMO. Les deux schémas de réception surpassent les schémas habituels étant donné la complexité du MIMO 4×4 et l'impraticabilité du MIMO optique. Nous discutons le hardware requis au démultiplexeur pour réaliser le MIMO 2×2. Nous démontrons huit transmissions de canaux de données sur 600 m et 1.3 km de RCF sur la bande C. Dans la dernière contribution, nous avons examiné la transmission des modes OAM et du multiplexage en longueur d'onde (WDM) pour augmenter la capacité de liaison optique dans les centres de données. Nous avons transmis avec succès des données sur douze modes OAM et trois longueurs d'onde simultanément dans la fibre. Nous avons examiné les performances lors du balayage de trois canaux WDM sur la bande C étendue, atteignant le débit binaire net le plus élevé enregistré pour la transmission OAM, soit 65,5 Tb/s. / In recent years, traffic volume inside data centers has increased significantly. As a result, we need scalable and efficient solutions appropriate for a data center infrastructure. Mode division multiplexing (MDM) is an excellent candidate to increase the capacity of such optical links. In this thesis, we examine ring-core fibers (RCFs) that support the propagation of orbital angular momentum (OAM) modes for multiplexing. We show the advantages of using OAM modes compared to other mode multiplexing solutions. In our first contribution, we introduced a numerical model to find coupling coefficients between OAM modes due to elliptical deformation in the fiber. Our model predicts experimental observations which cannot be seen with the classical perturbation models. We used the model to compare the performance of various fiber designs. In the second contribution, we fabricated a fiber design found to have low coupling using our numerical model. We characterized the mode-dependent loss (MDL) of the fiber experimentally. We minimize fiber destruction during MDL characterization with four fixed fiber lengths, probing each mode in a round-robin fashion. We used a re-programmable receiver to validate the purity of the modal excitation. We maximized launched mode purity and coupling by optimizing the free-space beam width and diameter using the perfect vortex excitation technique. We discuss several challenges we confronted, and demonstrate the advantages of our MDL technique over other techniques. Our fiber loss is acceptable for intra-data center links. In our third contribution, we examined data transmission performance in our fiber. We compared reception performance without multiple-input multiple-output (MIMO) processing (neither optical nor electronic) and reception with 2×2 MIMO. The two reception schemes overcome the complexity of 4×4 MIMO and the impracticality of optical MIMO. We discuss the hardware required at the demultiplexer to achieve the 2×2 MIMO. We demonstrate eight data channel transmissions over 600 m and 1.3 km of RCF across the C-band. In the last contribution, We examined the transmission of OAM modes and wavelength-division multiplexing (WDM) channels to increase the optical link capacity in data centers. We successfully transmitted data on twelve OAM modes and three wavelengths simultaneously in the fiber. We examined the performance when sweeping three WDM channels across the extended C-band, achieving the highest recorded net bit rate for OAM transmission, 65.5 Tb/s.
9

Formation de faisceaux laser avec moment angulaire orbital : fabrication de lames de phase en spirale réflectrices

Roy, Bruno 17 April 2018 (has links)
Une méthode pour obtenir des faisceaux avec moment angulaire orbital consiste à modifier un faisceau gaussien avec une lame à vortex, appelée aussi lame de phase en spirale (SPP). La majorité de ces lames fonctionnent par transmission. Notre technique produit une lame de phase réflectrice, qui est adéquate pour les expériences avec un faisceau à haute puissance. Dans ce mémoire nous décrivons la fabrication de lames de phase en spirale continue par réflexion avec un système de déposition. Ces lames furent utilisées pour transformer un faisceau gaussien en un faisceau de Laguerre-Gauss avec un moment angulaire de différents ordres. Ces faisceaux sont caractérisés par leur front d'onde hélicoïdal et un zéro d'intensité au centre. Les résultats furent comparés à ceux obtenus avec un élément diffractif commercial. Avec l'aide d'un axicon, ces lames furent utilisées pour la formation de faisceaux Bessel avec un moment angulaire. En focalisant un faisceau Laguerre-Gauss femtoseconde avec un axicon, nous avons produit des modifications de surface sur un échantillon de verre en BK7.
10

Génération d'harmoniques d'ordre élevé à deux faisceaux portant du moment angulaire / Generation of high-order harmonics from two beams carrying angular momentum

Chappuis, Céline 25 January 2019 (has links)
La génération d’harmoniques d’ordre élevé est un processus d’interaction lumière-matière hautement non-linéaire permettant la synthèse d’impulsions sub-femtosecondes, dites attosecondes (1 as = 10⁻¹⁸ s). Mes travaux de thèse portent sur l’étude du transfert de moment angulaire lors de ce processus, afin de contrôler les caractéristiques spatiales et de polarisation du rayonnement émis dans l’extrême ultraviolet. Comme pour la matière, le moment angulaire de la lumière peut être séparé en une composante de spin, associée à l’état de polarisation du faisceau, et une composante orbitale, reliée à la forme du front d’onde. La maitrise complète du moment angulaire des harmoniques nécessite de recourir à des schémas de génération à deux faisceaux non-colinéaires, créant un réseau de diffraction dans le milieu générateur. Nous avons montré que, bien que les règles de transfert obéissent à des lois de conservation du moment angulaire, la description fine du phénomène requiert une analyse précise du champ laser dans le milieu de génération. Ces travaux ouvrent des perspectives de mise en forme avancée des impulsions attosecondes. / High-order harmonic generation is a highly nonlinear laser-matter interaction process which allows the synthesis of sub-femtosecond pulses, also called attosecond (1 as = 10⁻¹⁸ s) pulses. My PhD is centered around the study of angular momentum transfer during this process, in order to control spatial and polarization features of the radiation which is emitted in the extreme ultraviolet. As for matter, the angular momentum of light can be divided into a spin component, associated with the beam’s polarization, and an orbital component, related to the shape of the wavefront. The control of high harmonics’ angular momentum requires generating schemes involving two crossing beams, thus creating a diffraction grating in the generating medium.We have shown that, although the transfer rules obey conservation laws of the angular momentum, the fine description of the phenomenon requires an accurate analysis of the laser field in the generation medium. This work opens the road for advanced shaping of attosecond pulses.

Page generated in 0.0851 seconds