• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Consolidation of unsaturated seabed around an inserted pile foundation and its effects on the wave-induced momentary liquefaction

Sui, T., Zheng, J., Zhang, C., Jeng, D-S., Guo, Yakun, He, R. 07 October 2016 (has links)
Yes / Seabed consolidation state is one of important factors for evaluating the foundation stability of the marine structures. Most previous studies focused on the seabed consolidation around breakwaters standing on the seabed surface. In this study, a numerical model, based on Biot’s poro-elasticity theory, is developed to investigate the unsaturated seabed consolidation around a nearshore pile foundation, in which the pile inserted depth leads to a different stress distribution. Seabed instabilities of shear failure by the pile self-weight and the potential liquefaction under the dynamic wave loading are also examined. Results indicate that (1) the presence of the inserted pile foundation increases the effective stresses below the foundation, while increases and decreases the effective stresses around the pile foundation for small (de/R<=3.3) and large (de/R>3.3) inserted depths, respectively, after seabed consolidation, (2) the aforementioned effects are relatively more significant for small inserted depth, large external loading, and small Young’s modulus, (3) the shear failure mainly occurs around the inserted pile foundation, rather than below the foundation as previously found for the located marine structures, and (4) wave-induced momentary liquefaction near the inserted pile foundation significantly increases with the increase of inserted depth, due to the change of seabed consolidation state. / National Natural Science Foundation for Distinguished Young Scholars (51425901), the National Natural Science Foundation of China (51209082, 51209083), the Natural Science Foundation of Jiangsu Province (BK20161509), the Fundamental Research Funds for the Central Universities (2015B15514), Jiangsu Graduate Research and Innovation Plan Grant (#CXLX11_0450) and the 111 project (B12032).
2

Investigation of nonlinear wave-induced seabed response around mono-pile foundation

Lin, Z., Pokrajac, D., Guo, Yakun, Jeng, D-S., Tang, T., Rey, N., Zheng, J., Zhang, J. 14 January 2017 (has links)
Yes / Stability and safety of offshore wind turbines with mono-pile foundations, affected by nonlinear wave effect and dynamic seabed response, are the primary concerns in offshore foundation design. In order to address these problems, the nonlinear wave effect on dynamic seabed response in the vicinity of mono-pile foundation is investigated using an integrated model, developed using OpenFOAM, which incorporates both wave model (waves2Foam) and Biot’s poro-elastic model. The present model was validated against several laboratory experiments and promising agreements were obtained. Special attention was paid to the systematic analysis of pore water pressure as well as the momentary liquefaction in the proximity of mono-pile induced by nonlinear wave effects. Various embedment depths of mono-pile relevant for practical engineering design were studied in order to attain the insights into nonlinear wave effect around and underneath the mono-pile foundation. By comparing time-series of water surface elevation, inline force, and wave-induced pore water pressure at the front, lateral, and lee side of mono-pile, the distinct nonlinear wave effect on pore water pressure was shown. Simulated results confirmed that the presence of mono-pile foundation in a porous seabed had evident blocking effect on the vertical and horizontal development of pore water pressure. Increasing embedment depth enhances the blockage of vertical pore pressure development and hence results in somewhat reduced momentary liquefaction depth of the soil around the mono-pile foundation. / Energy Technology Partnership (ETP), Wood Group Kenny, and University of Aberdeen; the National Science Fund for Distinguished Young Scholars (51425901) and the 111 project (B12032).
3

Near-trapping effect of wave-cylinders interaction on pore water pressure and liquefaction around a cylinder array

Lin, Z., Pokrajac, D., Guo, Yakun, Liao, C., Tang, T. 10 October 2021 (has links)
Yes / The near-trapping effects on wave-induced dynamic seabed response and liquefaction close to a multi-cylinder foundation in storm wave conditions are examined. Momentary liquefaction near multi-cylinder structures is simulated using an integrated wave-structure-seabed interaction model. The proposed model is firstly validated for the case of interaction of wave and a four-cylinder structure, with a good agreement with available experimental measurements. The validated model is then applied to investigate the seabed response around a four-cylinder structure at 0° and 45° incident angles. The comparison of liquefaction potential around individual cylinders in an array shows that downstream cylinder is well protected from liquefaction by upstream cylinders. For a range of incident wave parameters, the comparison with the results for a single pile shows the amplification of pressure within the seabed induced by progressive wave. This phenomenon is similar to the near-trapping phenomenon of free surface elevation within a cylinder array. / Energy Technology Partnership (ETP), Wood Group / Full-text of this article will be released for public view at the end of the publisher embargo on 10 Oct 2021.
4

Wave Induced Vertical Pore Pressure Gradients at Sandy Beaches

Florence, Matthew Benedict Skaanning 08 June 2022 (has links)
Predicting sediment transport at sandy beaches is a significant challenge in civil engineering owing to the variability in hydrodynamic, morphological, and geotechnical properties within a site and across multiple sites. Additionally, there are difficulties in measuring in-situ properties, and challenges in identifying and quantifying the different relevant driving and resisting forces. These challenges are further exacerbated in the intertidal zone where the addition of infiltration-exfiltration, wave run-up and run-down, bore collapse, cyclic emergence and submergence of sediments, interactions between standing waves and incident bores, and other processes must be considered. Among these many processes, pore pressure gradients within sandy beach sediments affect sediment transport by reducing the sediment's effective stress to zero (this process is called liquefaction). Despite the known importance of these pressure gradients with respect to sediment transport, there has been little field evidence of the role that these pore pressure gradients have on sediment transport, how they relate to the hydrodynamic properties, and their inclusion into predictive sediment transport equations. This study is based on field measurements of hydrodynamic and geotechnical properties, as well as pore pressure gradients during storm and non-storm conditions at sandy beaches in the intertidal zone. From the analysis of these field measurements, it was found that (1) liquefying pressure gradients are likely to develop in sediments that are rapidly inundated during storm conditions; (2) the magnitude of pore pressure gradients is related to the asymmetry of the pressure gradient and can occur with shoreward-directed near bed velocities; and (3) during non-storm conditions, pressure gradients that often do not exceed liquefaction criteria occurred more (less) frequently during a time period where erosion occurred in large (small) quantities, indicating that small non-liquefying pore pressure gradients may facilitate sediment transport. The results of this study demonstrate that current methods of scour calculations must include effects of pore pressure gradients to reduce error. Additionally, from this work it was found that sediment transport can be directed shoreward under momentary liquefaction. Finally, the results of this study show that sediment pore pressure gradients are related to wave skewness, spatial group steepness, and temporal group steepness which may aid modelling of pore pressure gradients. / Doctor of Philosophy / The transport of sediment particles (in this case, sand grains at beaches) is difficult to predict because of the many different governing processes that can be hard to measure, may be hard to relate to erosion or sediment accumulation specifically, and the variability in sediment and flow properties (grain size, fluid velocity, and others) at a specific location and across different locations. Storms, like hurricanes, tropical storms, and tsunamis, can drastically change the expected water properties (like water depth, wave height, and wave period), and the effects of water pressure within the sand bed. When a wave moves across the sand it causes a change in the water pressure that is within the sand. This water pressure is not the same throughout the sand with depth. When the gradient, or the difference between the water pressure at two different vertical locations, is large enough, the sand behaves like a fluid (like quicksand) and becomes easier to move, this process is called liquefaction. Even though previous work has shown that these pressure gradients (and the resulting liquefaction) is important for sediment transport, there have been few field measurements demonstrating their impact on sediment transport and how these gradients (and the resulting liquefaction) relate to wave and sand properties. This study presents field measurements of pressure gradients, wave and sediment properties, and sediment transport events during both storm and non-storm conditions. From these field measurements, it was shown that (1) during an extreme storm event, pressure gradients that liquefy the sediment are likely to occur on sediments that are not normally subjected to waves; (2) liquefying pressure gradients can occur when waves arrive at the beach, which may cause sediment to be moved shoreward; and (3) during non-storm conditions, pressure gradients that do not liquefy the sand occurred frequently during a sediment transport event, suggesting that these smaller pressure gradients may contribute to sediment transport by reducing the effective weight of the sediment. This work can be used to further understand the behavior of sediment pore pressure gradients, their relation to hydrodynamic properties, and how they influence sediment transport allowing for better predictions of sediment transport, beach nourishment calculations, and the design of coastal structures.

Page generated in 0.0839 seconds