Spelling suggestions: "subject:"monocular 1mages"" "subject:"monocular demages""
1 |
Estimativa da pose da cabeça em imagens monoculares usando um modelo no espaço 3D / Estimation of the head pose based on monocular imagesRamos, Yessenia Deysi Yari January 2013 (has links)
Esta dissertação apresenta um novo método para cálculo da pose da cabeça em imagens monoculares. Este cálculo é estimado no sistema de coordenadas da câmera, comparando as posições das características faciais específicas com as de múltiplas instâncias do modelo da face em 3D. Dada uma imagem de uma face humana, o método localiza inicialmente as características faciais, como nariz, olhos e boca. Estas últimas são detectadas e localizadas através de um modelo ativo de forma para faces. O algoritmo foi treinado sobre um conjunto de dados com diferentes poses de cabeça. Para cada face, obtemos um conjunto de pontos característicos no espaço de imagem 2D. Esses pontos são usados como referências na comparação com os respectivos pontos principais das múltiplas instâncias do nosso modelo de face em 3D projetado no espaço da imagem. Para obter a profundidade de cada ponto, usamos as restrições impostas pelo modelo 3D da face por exemplo, os olhos tem uma determinada profundidade em relação ao nariz. A pose da cabeça é estimada, minimizando o erro de comparação entre os pontos localizados numa instância do modelo 3D da face e os localizados na imagem. Nossos resultados preliminares são encorajadores e indicam que a nossa abordagem produz resultados mais precisos que os métodos disponíveis na literatura. / This dissertation presents a new method to accurately compute the head pose in mono cular images. The head pose is estimated in the camera coordinate system, by comparing the positions of specific facial features with the positions of these facial features in multiple instances of a prior 3D face model. Given an image containing a face, our method initially locates some facial features, such as nose, eyes, and mouth; these features are detected and located using an Adaptive Shape Model for faces , this algorithm was trained using on a data set with a variety of head poses. For each face, we obtain a collection of feature locations (i.e. points) in the 2D image space. These 2D feature locations are then used as references in the comparison with the respective feature locations of multiple instances of our 3D face model, projected on the same 2D image space. To obtain the depth of every feature point, we use the 3D spatial constraints imposed by our face model (i.e. eyes are at a certain depth with respect to the nose, and so on). The head pose is estimated by minimizing the comparison error between the 3D feature locations of the face in the image and a given instance of the face model (i.e. a geometrical transformation of the face model in the 3D camera space). Our preliminary experimental results are encouraging, and indicate that our approach can provide more accurate results than comparable methods available in the literature.
|
2 |
Estimativa da pose da cabeça em imagens monoculares usando um modelo no espaço 3D / Estimation of the head pose based on monocular imagesRamos, Yessenia Deysi Yari January 2013 (has links)
Esta dissertação apresenta um novo método para cálculo da pose da cabeça em imagens monoculares. Este cálculo é estimado no sistema de coordenadas da câmera, comparando as posições das características faciais específicas com as de múltiplas instâncias do modelo da face em 3D. Dada uma imagem de uma face humana, o método localiza inicialmente as características faciais, como nariz, olhos e boca. Estas últimas são detectadas e localizadas através de um modelo ativo de forma para faces. O algoritmo foi treinado sobre um conjunto de dados com diferentes poses de cabeça. Para cada face, obtemos um conjunto de pontos característicos no espaço de imagem 2D. Esses pontos são usados como referências na comparação com os respectivos pontos principais das múltiplas instâncias do nosso modelo de face em 3D projetado no espaço da imagem. Para obter a profundidade de cada ponto, usamos as restrições impostas pelo modelo 3D da face por exemplo, os olhos tem uma determinada profundidade em relação ao nariz. A pose da cabeça é estimada, minimizando o erro de comparação entre os pontos localizados numa instância do modelo 3D da face e os localizados na imagem. Nossos resultados preliminares são encorajadores e indicam que a nossa abordagem produz resultados mais precisos que os métodos disponíveis na literatura. / This dissertation presents a new method to accurately compute the head pose in mono cular images. The head pose is estimated in the camera coordinate system, by comparing the positions of specific facial features with the positions of these facial features in multiple instances of a prior 3D face model. Given an image containing a face, our method initially locates some facial features, such as nose, eyes, and mouth; these features are detected and located using an Adaptive Shape Model for faces , this algorithm was trained using on a data set with a variety of head poses. For each face, we obtain a collection of feature locations (i.e. points) in the 2D image space. These 2D feature locations are then used as references in the comparison with the respective feature locations of multiple instances of our 3D face model, projected on the same 2D image space. To obtain the depth of every feature point, we use the 3D spatial constraints imposed by our face model (i.e. eyes are at a certain depth with respect to the nose, and so on). The head pose is estimated by minimizing the comparison error between the 3D feature locations of the face in the image and a given instance of the face model (i.e. a geometrical transformation of the face model in the 3D camera space). Our preliminary experimental results are encouraging, and indicate that our approach can provide more accurate results than comparable methods available in the literature.
|
3 |
Estimativa da pose da cabeça em imagens monoculares usando um modelo no espaço 3D / Estimation of the head pose based on monocular imagesRamos, Yessenia Deysi Yari January 2013 (has links)
Esta dissertação apresenta um novo método para cálculo da pose da cabeça em imagens monoculares. Este cálculo é estimado no sistema de coordenadas da câmera, comparando as posições das características faciais específicas com as de múltiplas instâncias do modelo da face em 3D. Dada uma imagem de uma face humana, o método localiza inicialmente as características faciais, como nariz, olhos e boca. Estas últimas são detectadas e localizadas através de um modelo ativo de forma para faces. O algoritmo foi treinado sobre um conjunto de dados com diferentes poses de cabeça. Para cada face, obtemos um conjunto de pontos característicos no espaço de imagem 2D. Esses pontos são usados como referências na comparação com os respectivos pontos principais das múltiplas instâncias do nosso modelo de face em 3D projetado no espaço da imagem. Para obter a profundidade de cada ponto, usamos as restrições impostas pelo modelo 3D da face por exemplo, os olhos tem uma determinada profundidade em relação ao nariz. A pose da cabeça é estimada, minimizando o erro de comparação entre os pontos localizados numa instância do modelo 3D da face e os localizados na imagem. Nossos resultados preliminares são encorajadores e indicam que a nossa abordagem produz resultados mais precisos que os métodos disponíveis na literatura. / This dissertation presents a new method to accurately compute the head pose in mono cular images. The head pose is estimated in the camera coordinate system, by comparing the positions of specific facial features with the positions of these facial features in multiple instances of a prior 3D face model. Given an image containing a face, our method initially locates some facial features, such as nose, eyes, and mouth; these features are detected and located using an Adaptive Shape Model for faces , this algorithm was trained using on a data set with a variety of head poses. For each face, we obtain a collection of feature locations (i.e. points) in the 2D image space. These 2D feature locations are then used as references in the comparison with the respective feature locations of multiple instances of our 3D face model, projected on the same 2D image space. To obtain the depth of every feature point, we use the 3D spatial constraints imposed by our face model (i.e. eyes are at a certain depth with respect to the nose, and so on). The head pose is estimated by minimizing the comparison error between the 3D feature locations of the face in the image and a given instance of the face model (i.e. a geometrical transformation of the face model in the 3D camera space). Our preliminary experimental results are encouraging, and indicate that our approach can provide more accurate results than comparable methods available in the literature.
|
4 |
Monocular 3D Human Pose Estimation / Monokulär 3D-människans hållningsuppskattningRey, Robert January 2023 (has links)
The focus of this work is the task of 3D human pose estimation, more specifically by making use of key points located in single monocular images in order to estimate the location of human body joints in a 3D space. It was done in association with Tracab, a company based in Stockholm, who specialises in advanced sports tracking and analytics solutions. Tracab’s core product is their optical tracking system for football, which involves installing multiple highspeed cameras around the sports venue. One of the main benefits of this work will be to reduce the number of cameras required to create the 3D skeletons of the players, hence reducing production costs as well as making the whole process of creating the 3D skeletons much simpler in the future. The main problem we are tackling consists in going from a set of 2D joint locations and lifting them to a 3D space, which would add an information of depth to the joint locations. One problem with this task is the limited availability of in-thewild datasets with corresponding 3D ground truth labels. We hope to tackle this issue by making use of the restricted Human3.6m dataset along with the Tracab dataset in order to achieve adequate results. Since the Tracab dataset is very large, i.e millions of unique poses and skeletons, we have focused our experiments on a single football game. Although extensive research has been done in the field by using architectures such as convolutional neural networks, transformers, spatial-temporal architectures and more, we are tackling this issue by making use of a simple feedforward neural network developed by Martinez et al, this is mainly possible due to the abundance of data available at Tracab. / Fokus för detta arbete är att estimera 3D kroppspositioner, genom att använda detekterade punkter på människokroppen i enskilda monokulära bilder för att uppskatta 3D positionen av dessa ledpunkter. Detta arbete genomfördes i samarbete med Tracab, ett företag baserat i Stockholm, som specialiserar sig på avancerade lösningar för följning och analys inom idrott. Tracabs huvudprodukt är deras optiska följningssystem, som innebär att flera synkroniserade höghastighetskameror installeras runt arenan. En av de främsta fördelarna med detta arbete kommer att vara att minska antalet kameror som krävs för att skapa 3D-skelett av spelarna, vilket minskar produktionskostnaderna och förenklar hela processen för att skapa 3D-skelett i framtiden. Huvudproblemet vi angriper är att gå från en uppsättning 2D-ledpunkter och lyfta dem till 3D-utrymme. Ett problem är den begränsade tillgången till datamängder med 3D ground truth från realistiska miljöer. Vi angriper detta problem genom att använda den begränsade Human3.6m-datasetet tillsammans med Tracab-datasetet för att uppnå tillräckliga resultat. Eftersom Tracab-datamängden är mycket stor, med miljontals unika poser och skelett, .har vi begränsat våra experiment till en fotbollsmatch. Omfattande forskning har gjorts inom området med användning av arkitekturer som konvolutionella neurala nätverk, transformerare, rumsligttemporala arkitekturer med mera. Här använder vi ett enkelt framåtriktat neuralt nätverk utvecklat av Martinez et al, vilket är möjligt tack vare den stora mängden data som är tillgänglig hos Tracab.
|
Page generated in 0.0529 seconds