• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical performance analysis of novel solar tower receiver

Slootweg, Marcel January 2019 (has links)
Concern over the altering climate due to the release of anthropogenic greenhouse gases has caused a major shift in the developments of ways to minimise human impact on the climate. Solar energy is seen as one of the most promising sources to transform the energy market for low-carbon energy generation. Currently, solar power is generated via photovoltaic (PV) and concentrating solar power (CSP) technologies. The advantage of CSPs to scale up renewable energy to utility level, as well as to store thermal energy for electrical power generation when the sun is not available (after sunset or during cloudy periods) makes this technology an attractive option for sustainable clean energy. CSP development, however, is still in its infancy, and for it to be a competitive form of energy-generation technology, techno-economic developments in this field need to improve the efficiency and decrease the costs of this technology. A policy report by the European Academies’ Science Advisory Council (EASAC) (2011) indicated that central receiver (solar tower) CSP systems show the greatest margin for technological improvements (40% to 65% is estimated), and that an improvement in receiver technology could make the greatest contribution to increase efficiency. This study therefore focused on analysing the optical and thermal performance of a new proposed solar cavity molten salt receiver design for a central receiver CSP system using a numerical approach. In this study, the receiver’s performance was analysed by first selecting an existing heliostat field, Planta Solar 10 (PS-10). For the numerical analysis to reflect conditions that are as realistic as possible, numerical models for different aspects were selected and validated. For modelling the sun, the solar tracking numerical model proposed by Iqbal (1983) was selected and implemented after literature and comparison showed adequate results. The direct normal irradiation (DNI) was modelled by applying a clear sky model, with the parameterisation model C proposed by Iqbal (1983) as the chosen model. The variables in this model that were subject to temperature, and humidity values were more accurately presented by adding numerical approximations of the region’s actual weather data. The DNI model reflected realistic fluctuations. For the thermal modelling, a validation study was conducted on impingement flow heat transfer to select an appropriate Reynolds-averaged Navier-Stokes (RANS) model that would provide accurate results when conducting the thermal performance test on the receiver. The study concluded that the transitional Shear Stress Transport (SST) turbulence model performed the best. A new method was also developed and validated that allows one to not only simulate complex geometries within the Monte Carlo ray tracing environment SolTrace, but also to apply the results obtained by simulating this model as a heat source within the computational fluid dynamics (CFD) environment ANSYS Fluent. This allows SolTrace modelling to be more accurate, since models do not need to be approximated to simple geometries. It also provides an alternative for solar modelling in ANSYS Fluent. The optical analysis was conducted by first performing an analysis on the receiver aperture and studying its sensitivity on the captured flux. This was followed by analysing the optics of the proposed receiver, the flux distributions on a simplified absorber surface area, and how these distributions are altered by changing some parameters. An in-depth analysis was finally done on the absorber area by applying the aforementioned model to simulate complex geometries within SolTrace, with the results illustrating the difference of the detailed geometry on optical modelling. An alternative receiver design with improved optical features was proposed, with an initial study providing promising results. The thermal analysis was done within the CFD environment, with only a section of the absorber surface area considered, and by applying the solar flux simulated during the optical analysis as heat source within the geometry model. This allowed the model to simulate the effects of re-radiation at the surface of the absorber while simulating the heat transfer at the fluid molten salt side simultaneously. The results showed that, for the current design and requirements, the absorber surface temperature reaches impractical temperatures. Altering the design or being more lenient on the requirements has, however, shown dramatic improvements in terms of thermal performance. Sensitivity studies for both the optical and thermal analyses have shown that changes in design can dramatically improve the performance of the design, making it a possible feasible receiver design for central receiver systems. / Dissertation (MEng)--University of Pretoria, 2019. / National Research Foundation (NRF) / Mechanical and Aeronautical Engineering / MEng / Unrestricted
2

Topographic Relief Correlated Monte Carlo 3D Radiative Transfer Simulator for Forests / 森林における地形効果を考慮したモンテカルロ3次元放射伝達シミュレータ

Sheng-Ye, Jin 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第20538号 / 地環博第159号 / 新制||地環||32(附属図書館) / 京都大学大学院地球環境学舎地球環境学専攻 / (主査)准教授 須崎 純一, 准教授 西前 出, 教授 柴田 昌三 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
3

Vat Photopolymerization of High-Performance Materials through Investigation of Crosslinked Network Design and Light Scattering Modeling

Feller, Keyton D. 08 June 2023 (has links)
The reliance on low-viscosity and photoactive resins limits the accessible properties for vat photopolymerization (VP) materials required for engineering applications. This has limited the adoption of VP for producing end-use parts, which typically require high MW polymers and/or more stable chemical functionality. Decoupling the viscosity and molecular weight relationship for VP resins has been completed recently for polyimides and highperformance elastomers by photocuring a scaffold around polymer precursors or polymer nanoparticles, respectively. Both of these materials are first shaped by printing a green part followed by thermal post-processing to achieve the final part properties. This dissertation focuses on improving the processability of these material systems by (i) investigating the impact of scaffold architecture and polysalt monomer composition on photocuring, thermal post-processing, and resulting thermomechanical properties and (ii) developing a Monte Carlo ray-tracing (MCRT) simulation to predict light scattering and photocuring behavior in particle-filled resins, specifically zinc oxide nanoparticles in a rigid polyester resin and styrene butadiene rubber latex resin. The first portion of the dissertation introduces VP of a tetra-acid and half-ester-based polysalt resin derived from 4,4'-oxydiphthalic anhydride and 4,4-oxydianiline (ODPA-ODA), a fully aromatic polyimide with high glass transition temperature and thermal stability. This polyimide, and polyimides like this, find use in demanding industries such as aerospace, automotive and electronic applications. The author evaluated the hypothesis that a non-bound triethylene glycol dimethacrylate (TEGDMA) scaffold would facilitate more efficient scaffold burnout and thus achieve parts with reduced off-gassing potential at elevated temperatures. Both resins demonstrated photocuring and were able to print solid and complex latticed parts. When thermally processed to 400 oC, only 3% of the TEGDMA scaffold remained within the final parts. The half-ester resin exhibits higher char yield, resulting from partial degradation of the polyimide backbone, potentially caused by lack of solvent retention limiting the imidization conversion. The tetra-acid exhibits a Tg of 260oC, while the half-ester displays a higher Tg of 380 oC caused by the degradation of the polymer backbone, forming residual char, restricting chain mobility. Solid parts displayed a phase-separated morphology while the half-ester latticed parts appear solid, indicating solvent removal occurs faster in the half-ester composition, presumably due to reduced polar acid functionality. This platform and scaffold architecture enables a modular approach to produce novel and easily customizable UV-curable polyimides to easily increase the variety of polyimides and the accessible properties of printed polyimides through VP. The second section of this dissertation describes the creation and validation of a MCRT simulation to predict light scattering and the resulting photocured shape of a ZnO-filled resin nanocomposite. Relative to prior MCRT simulations in the literature, this approach requires only simple, easily acquired inputs gathered from dynamic light scattering, refractometry, UV-vis spectroscopy, beam profilometry, and VP working curves to produce 2D exposure distributions. The concentration of 20 nm ZnO varied from 1 to 5 vol% and was exposed to a 7X7 pixel square ( 250 µm) from 5 to 11 s. Compared to experimentally produced cure profiles, the MCRT simulation is shown to predict cure depth within 10% (15 µm) and cure widths within 30% (20 µm), below the controllable resolution of the printer. Despite this success, this study was limited to small particles and low loadings to avoid polycrystalline particles and maintain dispersion stability for the duration of the experiments. Expanding the MCRT simulation to latex-based resins which are comprised of polymer nanoparticles that are amorphous, homogeneous, and colloidally stable. This allows for validating the MCRT with larger particles (100 nm) at higher loadings. Simulated cure profiles of styrene-butadiene rubber (SBR) loadings from 5 vol% to 25 vol% predicted cure depths within 20% ( µm) and cure widths within 50% ( µm) of experimental values. The error observed within the latex-based resin is significantly higher than in the ZnO resin and potentially caused by the green part shrinking due to evaporation of the resin's water, which leads to errors when trying to experimentally measure the cure profiles. This dissertation demonstrates the development of novel and functional materials and creation process-related improvements. Specifically, this dissertation presents a materials platform for the future development of unique photocurable engineering polymers and a corresponding physics-based model to aid in processing. / Doctor of Philosophy / Vat Photopolymerization (VP) is a 3D printing process that uses ultraviolet (UV) light to selectively cure liquid photosensitive resin into a solid part in a layer-by-layer fashion. Parts produced with VP exhibit a smooth surface finish and fine features of less than 100 µm (i.e., width of human hair). Recoating the liquid resin for each layer limits VP to low-viscosity resins, thus limiting the molecular weight (and thus performance) of the printed polymers accessible. Materials that are low molecular weight are limited in achieving desirable properties, such as elongation, strength, and heat resistance. Solvent-based resins, such as polysalt and latex resins have demonstrated the ability to decouple the viscosity and molecular weight relationship by eliminating polymer entanglements using low-molecular-weight precursors or isolating high-molecular-weight polymers into particles. This dissertation focuses on expanding and improving the printability of these methods. The second chapter of the dissertation investigates the impact of scaffold architecture in printing polyimide polysalts to improve scaffold burnout. Polysalts are polymers that exist as dissolved salts in solution, with each monomer holding two electronic charges. When heated, the solvent evaporates and the monomers react to form a high molecular-weight polymer. While previous work featured a polysalt that was covalently bonded to the monomers, the polysalt in this work is made printable by co-dissolving a scaffold. The polysalt resins are photocured and thermally processed to polymerize and imidize into a high-molecular-weight polymer, while simultaneously pyrolyzing the scaffold. Using a co-dissolved scaffold allows the investigation of two different monomers of tetra-acid and half-ester functionality. The half-ester composition underwent degradation during heating, increasing the printed parts' glass transition or softening point. The scaffold had little impact on the polysalt polymerization or final part properties and was efficiently removed, with only 3% remaining in final parts. The composition and properties of the monomers selected played a bigger role due to partial degradation altering the properties of the final parts. Overall, this platform and scaffold architecture allows for a larger number of polyimides to be accessible and easily customizable for future VP demands. The third chapter describes the challenges of processing photocurable resins that contain particles due to the UV light scattering in the resin vat during printing. When the light from the printer hits a particle, it is scattered in all directions causing the layer shape to be distorted from the designed shape. To overcome this, a Monte Carlo ray-tracing (MCRT) simulation was developed to mimic light rays scattering within the resin vat. The simulation was validated by comparing simulation results against experiment trials of photocuring resins containing 20nm zinc oxide (ZnO) nanoparticles. The MCRT simulation predicted all the experimental cure depths within 10% (20 µm) and cured widths within 30% (15 µm) error. Despite the high accuracy, this study was limited to small particles and low concentrations. Simulating larger particles is difficult as the simulation assumes each particle to be uniform throughout its volume, which is atypical of large ceramic particles. The fourth chapter enables high particle volume loading by using a highly stretchable styrene-butadiene rubber (SBR) latex-based resin. Latex-based resins maintain low viscosity by separating large polymer chains into nano-particles that are noncrystalline and uniform. When the chains are separated, they cannot interact or entangle, keeping the viscosity low even at high concentrations (>30 vol%). Like the ZnO-filled resin, the latex resin is experimentally cured and the MCRT simulation predicts the resulting cure shape. The MCRT simulation predicted cure depths within 20% (100 µm) and over-cure widths within 50% (100 µm) of experimental values. This error is substantially higher than the ZnO work and is believed to be caused by the water evaporating from the cured resin resulting in inconsistent measurements of the cured dimensions.
4

Microscopies Optiques et Spectroscopies de Matériaux Épais : Mesures et Simulations Appliquées à des Photosensibilisateurs de l'Oxygène Singulet en Matrice de Silice / Optical Spectroscopy and Microscopy of Thick Materials : Measurements and Simulations Applied to Photo-Sensitizers of Singlet Oxygen in Silica Matrix

Garcia Pérez, José Antonio 20 September 2013 (has links)
Ce travail présente une étude, par microscopie optique et de fluorescence, de matériaux hybrides, basés sur des monolithes de silice contenant des dérivés du cyano-anthracène : 9,10-dicyano-anthracène (DCA) ou 9,14-dicyano-benzo(b)triphénylène (DBTP), qui sont des photo-sensibilisateurs de l'oxygène singulet. Alors que ces matériaux sont bien caractérisés du point de vue de la photo-oxydation des sulfures sous des conditions hétérogènes par des études macroscopiques, certaines propriétés concernant l'association du photosensibilisateur avec l'absorbant peuvent être masquées, dominées ou encore mal interprétées par uniquement des mesures d'ensemble. Ici, nous combinons la spectroscopie d'ensemble et la microscopie optique et de fluorescence, et développons des protocôles expérimentaux concernant des échantillons solides épais, dans le but d'étudier la distribution spatiale et la mobilité des photosensiblisateurs dans la matrice hôte ainsi que d'analyser les interactions entre ces deux entités. La microscopie optique montre dans tous les cas des inhomogénéités localisées à l'interface du monolithe et attribuées à la formation de bulles pendant la synthèse et une accumulation locale du DBTP. A partir de simulations Monte-Carlo de lancer de rayons, nous développons un protocôle pour corriger les artéfacts de réfraction dans les profils d'intensité de fluorescence en fonction de la profondeur, obtenus par des mesures confocales, pour déterminer la distribution axiale du photosensibilisateur ce qui permet de mettre en évidence une nette augmentation de la concentration en photosensibilisateurs dans les premiers 50—100 m dessous la surface. L'analyse FRAP montre la très lente mobilité de tous les photosensibilisateurs et un retour partiel de l'intensité ce qui signifie que les photosensibilisateurs se trouvent dans des régions compartimentées, probablement dues à des contraintes aléatoires du réseau de pores. De plus, l'analyse FLIM montrent des propriétés photo physiques semblables pour le DBTP inclus et greffé ce qui permet d'envisager l'inefficacité de la fonctionnalisation. Ces observations soulignent que les monolithes à base de silice sont des systèmes hors d'équilibre et correspondent à un instantané des inhomogénéités gelées pendant les derniers instants du processus de condensation-hydrolyse des monomères de silice. Enfin, corréler la spectroscopie classique avec nos observations confocales sur différentes formes de DBTP, nous permet d'établir que la bande d'émission de fluorescence non-structurée et fortement déplacée vers le rouge est probablement due à la formation d'excimères. / This work presents an optical and fluorescence microscopy study of hybrid materials based on porous silica monoliths containing derivatives of cyano-anthracene: 9,10-dicyano-anthracene (DCA) or 9,14-dicyano-benzo(b)triphenylene (DBTP), photo-sensitizers of singlet oxygen. While these materials are well known from bulk studies for the efficient photo-oxidation of sulphides under heterogeneous conditions, some characteristics of the association of the photo-sensitizer and the absorbent may be masked, overlooked or otherwise misinterpreted by bulk investigations alone. Here, we combine classical bulk spectroscopy with optical and fluorescence microscopy, and develop experimental protocols for thick solid state samples, to study the spatial distribution and the mobility of the guest in the host matrix, and analyse guest-host interactions. Optical microscopy shows in all cases localised inhomogeneities at monolith interface, ascribed to bubble formation during synthesis; wide-field fluorescence microscopy shows that these features are associated with local accumulation of the larger, more hydrophobic of the two photo-sensitizers, DBTP. Photo-sensitizer lateral distribution at the monolith interface is otherwise homogeneous. Based on Monte Carlo ray-tracing simulations, we develop a protocol for correcting refraction artefacts in measured confocal fluorescence depth profiles, to obtain the photo-sensitizer axial distribution. While it in general exhibits a sharp increase in concentration in the first 50—100 m below the surface compared to the bulk, this layer contributes negligibly to the total content of the monoliths. FRAP analysis shows mobility of the photo-sensitizers in all cases, but with diffusion constants implying months or years to equilibrate the centimetre-sized monoliths. Classical bulk and confocal spectroscopy with FLIM analysis show similar photo-physical properties of DBTP included and grafted. The main effects of funcionalization in this photo-sensitizer are to slow down diffusion and to counter its aggregation. Incomplete FRAP recovery implies photo-sensitizer mobility is compartmented, probably due to random constrictions in the pore network. These observations underline that silica-based monoliths are non-equilibrium systems encapsulating a snapshot of any homogeneities frozen in during the later stages of hydrolysis-condensation of silicate units. Correlating classical bulk spectroscopy with our confocal observations on the different DBTP forms, conclude that its unusual structureless, red-shifted emission is probably due to excimer emission.
5

Design Fabrication, and Initial Characterization of a 13 kWe Metal-Halide and Xenon Short-Arc Lamp High-Flux Solar Simulator with Adjustable Concentration Profiles Using a Horizontally-Translating Central Lamp

Ferreira, Alexander Vence 03 August 2023 (has links)
No description available.

Page generated in 0.0913 seconds