• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nízkoprofilová směrová anténa / Low-profile directional antenna

Žúrek, Dan January 2016 (has links)
This diploma thesis deals with a study of low-profile directional antennas, followed by design and optimization of parabolic reflector antenna in centimeter and millimeter band. The first part of this work is focused on the analysis of several kinds of directional antennas, mainly on parabolic reflector and on SIW technology, which will be used for final antenna realization. The next part of this project is about the particular concept of the substrate integrated parabolic antenna for 60 GHz ISM band, its simulation and optimization in the CST Microwave Studio software. The final part of this thesis is devoted to the results achieved.
2

Monopol integrovaný do 3D textilu / 3D textile integrated monopole

Füll, David January 2017 (has links)
This thesis deals with the design of omnidirectional monopole antennas. Using the parabolic reflector and the directors, the directional characteristics of monopole antennas are modified. This directional antenna, together with the omnidirectional antenna, examines the effect of various materials, the emission characteristics and the input reflection factor, near the antennas. These antennas are made of 3D textile, measured in anechoic chamber and compared to the designed antennas. At the end of the thesis is the summary and evaluation of the result.
3

Antenna Options for High Altitude IMT Base Stations (HIBS) in Cellular Networks

Magnusson, Harald January 2022 (has links)
This thesis is the result of a collaboration between Ericsson AB and Luleå University of Technology. A feasibility study has been conducted to investigate antenna options for the HIBS access link. The study contains two parts. Firstly, a link budget investigating the gain required from the antenna. The metric of concern in the link budget was SNR. Secondly, a wide area coverage investigation that explored coverage feasibility over an area with a radius of 100 km. The metrics of concern in this investigation were antenna gain and beamwidth. Two types of antennas have been included: parabolic reflector and phased array. Seven frequency bands have been studied: 0.7, 1.9, 2.7, 3.5, 6, 10, and 26 GHz. The first three bands shared a bandwidth of 20 MHz, the next three shared a bandwidth of 80 MHz, and the last band had a bandwidth of 100 MHz. This bandwidth difference was found to have a meaningful effect on SNR. The feasibility condition for the link budget was -6 dB SNR for uplink and 6 dB SNR for downlink. The link budget concluded that the first three bands (0.7, 1.9, and 2.7 GHz) are feasible with reasonably sized antennas. This meant a parabolic reflector dish diameter of 0.6 m for all three bands, or a phased array antenna with 4, 32, and 64 elements, respectively, that all resulted in a roughly equal physical size of the array. The 3.5 GHz frequency band was found to be feasible with a much larger antenna (512 element array). The bands above 3.5 GHz were not deemed feasible. The wide area investigation limited the antenna to a phased array antenna. Two cell layouts were considered for coverage: a 7 cell layout with one nadir cell surrounded by 6 cells and a 19 cell layout which encapsulates the former with another layer of 12 cells. The feasibility condition was that the half power beamwidth is equal to the angular size of a cell from the HIBS for each cell layer while maintaining gain. Beamwidth was controlled through array tapering and altering element configurations. This investigation concluded that coverage is feasible for two bands. In the 0.7 GHz band, the chosen option was a 7 cell layout using a single element antenna for the nadir cell and 3 by 1 arrays for the outer cells. In the 1.9 GHz band, the chosen option was a 19 cell layout with a single element antenna for the nadir cell, 5 by 1 arrays for the cells in the middle layer, and 8 by 5 arrays for the outer layer. Higher frequency bands required higher gain antennas which in turn did not provide adequate beamwidth for coverage.
4

Design Fabrication, and Initial Characterization of a 13 kWe Metal-Halide and Xenon Short-Arc Lamp High-Flux Solar Simulator with Adjustable Concentration Profiles Using a Horizontally-Translating Central Lamp

Ferreira, Alexander Vence 03 August 2023 (has links)
No description available.

Page generated in 0.0493 seconds