Spelling suggestions: "subject:"montecarlo technique"" "subject:"contestarlo technique""
1 |
[en] STUDY OF STOCHASTIC MIXING MODELS FOR COMBUSTION IN TURBULENT FLOWS / [pt] ESTUDO DE MODELOS DE MISTURA ESTOCÁSTICOS PARA A COMBUSTÃO EM ESCOAMENTOSTURBULENTOSELDER MARINO MENDOZA ORBEGOSO 11 December 2007 (has links)
[pt] O presente trabalho tem como finalidade avaliar os
diferentes modelos
de mistura para o cálculo da combustão de reagentes pré-
misturados utilizando a abordagem de Reator Parcialmente
Misturado (PaSR). Os modelos
de mistura considerados neste trabalho foram os modelos
IEM estendido,
Langevin e Langevin estendido. Investiga-se aqui o grau de
mistura previsto
por tais modelos e sua influência sobre as propriedades
termoquímicas em
um processo de combustão.
A primeira parte deste trabalho consiste na apresentação e
avaliação
destes modelos de mistura, considerando-se um campo
escalar inerte em
presença de um campo turbulento homogêneo e isotrópico.
Uma vez que
estes modelos de mistura envolvem formulações do tipo
estocástico, sua
implementação foi realizada utilizando o método de Monte
Carlo, mediante
a utilização de esquemas numéricos adequados à resolução
de equações
diferenciais estocásticas. Assim, estuda-se a evolução da
Função Densidade
de Probabilidade (PDF) e das principais propriedades do
campo escalar para
cada modelo implementado. Os resultados obtidos também são
comparados
com simulação numérica direta e com resultados analáticos
disponsáveis. Um
ótimo acordo em termos qualitativos e quantitativos é
obtido.
A segunda parte deste trabalho utiliza estes modelos para
o estudo
numérico de um PaSR no qual são modelados os processos
difusivos e reativos presentes durante a combustão. O PaSR
é usado para avaliar a influência
dos modelos de mistura nas propriedades termoquímicas da
mistura em uma
situação de combustão de tipo pré-misturada, que é
modelada utilizando-se
uma variável de progresso de uma reação. Os resultados
obtidos com os diferentes modelos de mistura são
comparados para diferentes regimes de funcionamento do
PaSR, mostrando que, em situações de mistura rápida e
reação
intensa, os diferentes modelos apresentam resultados
similares. Porém, nos
casos de mistura lenta e reação moderada, discrepancias
importantes são
observadas entre os resultados dos modelos; as quais
atingem até 65% para
o valor médio da variável de progresso da reação. / [en] The present work evaluates several mixing models for the
prediction
of premixed combustion in a Partially Stirred Reactor
(PaSR). The models
considered in this work were the extended IEM, Langevin
and extended
Langevin models. The degree of mixing and its influence on
the termochemical properties in a combustion process are
investigated here.
The first part of this work consists on the presentation
and the assesment of these mixing models in which a single
scalar field was considered in
presence of a homogeneous and isotropic turbulent field.
Since these mixing
models involve stochastic terms, their implementation is
performed by the
Monte Carlo method using numerical schemes which solve the
corresponding Stochastic Differential Equations (SDE). The
evolution of the Probability Density Function (PDF) and
the main properties for a single scalar
field are studied for each mixing model. The numerical
results are compared
with Direct Numerical Simulation and available analytical
results. Excellent
qualitative and quantitative agreements are obtained.
In the second part of this work, mixing models are used
for numerical
simulation of a PaSR where the diffusive and reactive
processes occur. The
PaSR is used to assess the mixing model influence on the
termochemical
properties of the mixture in a premixed combustion
process, which is
modeled using a reaction progress variable. The results
obtained with
the different mixing models are compared in several
operating regimes of
the PaSR, showing that when mixing is fast and reaction is
intense, the
different models lead to similar results. However, when
mixing is slow and
reaction is weak, important discrepancies are observed
between the model
results, which reach 65%, as far as the averaged reaction
progress variable
is concerned
|
2 |
Dynamique d'aimantation dans les assemblées d'agrégats ferromagnétiques : effets des interactions / Dynamics of magnetization in the assemblies of ferromagnetic aggregates : effect of the interactionsBrinis, Drifa 12 July 2017 (has links)
Dans notre travail, nous avons utilisé la technique Monte Carlo afin de simuler l'effet des interactions dipolaires sur le retournement de l'aimantation d'une assemblée de nanoparticules ferromagnétiques. Dans notre modèle, nous avons considéré des nanoparticules à anisotropie uniaxiale, plus précisément le Cobalt. Avec la condition KV/kBT >> 1, le moment magnétique de chaque nanoparticule est figé dans ses positions d'équilibre et il ne peut pas fluctuer autour. Nous avons choisi de faire notre étude par le biais de la susceptibilité alternative car elle apporte l'avantage de pouvoir faire l'étude sur une large gamme de fréquences sans avoir à changer de technique de mesure puisque le temps de mesure est égale à l'inverse de la fréquence du champ appliqué. Nous avons étudié douze types d'assemblées chacune diffère de l'autre soit par sa forme, la distribution spatiale des nanoparticules ou la distribution des axes d'anisotropie. Et nous avons discerné l'influence de chaque paramètre sur l'effet des interactions dipolaires sur le retournement de l'aimantation. / In our work, we used Monte Carlo technique to simulate the effect of dipolar interactions on the magnetization reversal of a ferromagnetic nanoparticles assembly. In our model, we considered nanoparticles with uniaxial anisotropy and specifically the Cobalt. With the condition KV/kBT >> 1, the magnetic moment of each nanoparticle is fixed in its equilibrium positions and it can not fluctuate around. We chose to our investigation the ac susceptibility because it provides the advantage of making the study with a wide frequency range without changing measurement technique, because the measurement time is equal to the inverse of the frequency of the alternating magnetic field applied. We studied twelve types of assemblies each one differs from the other by some properties : The shape of the assembly, the spatial distribution of the nanoparticles or the distribution of the anisotropy axes. And we discerned the influence of each of theses parameters on the effect of dipolar interactions on the magnetization reversal.
|
3 |
Multi-dimensional direct-sequence spread spectrum multiple-access communication with adaptive channel codingMalan, Estian 25 October 2007 (has links)
During the race towards the4th generation (4G) cellular-based digital communication systems, a growth in the demand for high capacity, multi-media capable, improved Quality-of-Service (QoS) mobile communication systems have caused the developing mobile communications world to turn towards betterMultiple Access (MA) techniques, like Code Division Multiple Access (CDMA) [5]. The demand for higher throughput and better QoS in future 4G systems have also given rise to a scheme that is becoming ever more popular for use in these so-called ‘bandwidth-on-demand’ systems. This scheme is known as adaptive channel coding, and gives a system the ability to firstly sense changes in conditions, and secondly, to adapt to these changes, exploiting the fact that under good channel conditions, a very simple or even no channel coding scheme can be used for Forward Error Correction(FEC). This will ultimately result in better system throughput utilization. One such scheme, known as incremental redundancy, is already implemented in the Enhanced Data Rates for GSM Evolution (EDGE) standard. This study presents an extensive simulation study of a Multi-User (MU), adaptive channel coded Direct Sequence Spread Spectrum Multiple Access (DS/SSMA) communication system. This study firstly presents and utilizes a complex Base Band(BB) DS/SSMA transmitter model, aimed at user data diversity [6] in order to realize the MU input data to the system. This transmitter employs sophisticated double-sideband (DSB)Constant-Envelope Linearly Interpolated Root-of-Unity (CE-LI-RU) filtered General Chirp-Like (GCL) sequences [34, 37, 38] to band limit and spread user data. It then utilizes a fully user-definable, complex Multipath Fading Channel Simulator(MFCS), first presented by Staphorst [3], which is capable of reproducing all of the physical attributes of realistic mobile fading channels. Next, this study presents a matching DS/SSMA receiver structure that aims to optimally recover user data from the channel, ensuring the achievement of data diversity. In order to provide the basic channel coding functionality needed by the system of this study, three simple, but well-known channel coding schemes are investigated and employed. These are: binary Hamming (7,4,3) block code, (15,7,5) binary Bose-Chadhuri-Hocquenghem (BCH) block code and a rate 1/3 <i.Non-Systematic (NS) binary convolutional code [6]. The first step towards the realization of any adaptive channel coded system is the ability to measure channel conditions as fast as possible, without the loss of accuracy or inclusion of known data. In 1965, Gooding presented a paper in which he described a technique that measures communication conditions at the receiving end of a system through a device called a Performance Monitoring Unit (PMU) [12, 13]. This device accelerates the system’sBit Error Rate (BER) to a so-called Pseudo Error Rate(PER) through a process known as threshold modification. It then uses a simple PER extrapolation algorithm to estimate the system’s true BER with moderate accuracy and without the need for known data. This study extends the work of Gooding by applying his technique to the DS/SSMA system that utilizes a generic Soft-Output Viterbi Algorithm(SOVA) decoder [39] structure for the trellis decoding of the binary linear block codes [3, 41-50], as well as binary convolutional codes mentioned, over realistic MU frequency selective channel conditions. This application will grant the system the ability to sense changes in communication conditions through real-time BER measurement and, ultimately, to adapt to these changes by switching to different channel codes. Because no previous literature exists on this application, this work is considered novel. Extensive simulation results also investigate the linearity of the PER vs. modified threshold relationship for uncoded, as well as all coded cases. These simulations are all done for single, as well as multiple user systems. This study also provides extensive simulation results that investigate the calculation accuracy and speed advantages that Gooding’s technique possesses over that of the classic Monte-Carlo technique for BER estimation. These simulations also consider uncoded and coded cases, as well as single and multiple users. Finally, this study investigates the experimental real-time performance of the fully functional MU, adaptive coded, DS/SSMA communication system over varying channel conditions. During this part of the study, the channel conditions are varied over time, and the system’s adaptation (channel code switching) performance is observed through a real-time observation of the system’s estimated BER. This study also extends into cases with multiple system users. Since the adaptive coded system of this study does not require known data sequences (training sequences), inclusion of Gooding’s technique for real-time BER estimation through threshold modification and PER extrapolation in future 4G adaptive systems will enable better Quality-of-Service (QoS) management without sacrificing throughput. Furthermore, this study proves that when Gooding’s technique is applied to a coded system with a soft-output, it can be an effective technique for QoS monitoring, and should be considered in 4G systems of the future. / Dissertation (MEng (Computer Engineering))--University of Pretoria, 2007. / Electrical, Electronic and Computer Engineering / MEng / unrestricted
|
Page generated in 0.0718 seconds