Spelling suggestions: "subject:"mossbauer spectroscopy."" "subject:"ossbauer spectroscopy.""
1 |
Mossbauer spectroscopic and structural studies of tin materialsAbrahams, I. January 1986 (has links)
No description available.
|
2 |
Synthesis and characterisation of metal oxides and metal doped variantsSkinner, Stephen John January 1997 (has links)
No description available.
|
3 |
Applications of maximum entropy data analysisMcLean, Andrew Lister January 1995 (has links)
No description available.
|
4 |
A Mossbauer Spectroscopy Investigation of Fe enriched WC-CoSufianu, Adeleke Wasiu January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. May 2016. / Tungsten carbide cobalt (WC-Co) cemented carbides are widely used for cutting, drilling, machining and as wear resistant materials due to the combination of high hardness and fracture toughness. In this work, we report on as-milled and as-sintered WC-10Co-20Fe samples which were ball milled for 15 hrs and sintered using liquid phase sintering (LPS). These samples were investigated by Vickers hardness test, microstructural analysis, X-ray diffraction (XRD), transmission Mössbauer spectroscopy (TMS) and conversion electron Mössbauer spectroscopy (CEMS) techniques.
A mean hardness value of 1160 ± 42 HV was obtained for WC-10Co sample while a value of 776 ± 35 HV was determined for the WC-10Co-20Fe using the Vickers hardness tester. The lower hardness value for WC-10Co-20Fe is attributed to the high volume of the binders (10% Co and 20 %Fe) incorporated in the sample. The microstructural analysis of the as-sintered WC-10Co and WC-10Co-20Fe samples reveals that the light regions represent the WC phases and the dark regions signify the presence of the Co and CoFe phases in the as-sintered WC-10Co and WC-10Co-20Fe samples, respectively. The energy dispersive spectroscopy (EDS) of the as-sintered samples shows the presence of the starting powders used (WC, Co and Fe) and some Cr contamination resulting from either the production process or the starting powders. / GR 2016
|
5 |
Spectroscopic and analytical characterization of the distribution of iron in intact mitochondria from Saccharomyces cerevisiaeHudder, Brandon Neal 30 October 2006 (has links)
Electron paramagnetic resonance (EPR) and Mössbauer spectroscopy were used to examine the distribution of iron in mitochondria from Saccharomyces cerevisiae. These organelles were packed into EPR and Mössbauer cuvettes, affording spectra with unprecedented signal/noise ratios. EPR spectra of as-isolated intact mitochondria exhibited fourteen distinct signals, some of which were assigned according to previously reported g-values obtained using isolated proteins. Signals from adventitious manganese (II) and iron (III) were largely removed when mitochondria were isolated in buffers supplemented with the metal chelators EDTA or EGTA. Signals were simulated and intensities were quantified to afford spin concentrations and estimates of the concentration of EPR-active species in mitochondria. The effects of treating samples with chemical modifiers were examined. Packed samples were analyzed for protein and metal content, affording averaged values of 50 mg/mL [protein], 590 õM [Fe], 340 õM [Cu], and 17 õM [Mn]. 57Fe-enriched intact mitochondria isolated in the presence of metal chelators exhibited Mössbauer spectra dominated by three components. Approximately 60% of the 57Fe in the sample gave rise to a quadrupole doublet, most of which was diamagnetic. The parameters of this doublet are typical of S = 0 [4Fe-4S]2+ clusters and S = 0 ferrous heme groups. Spectra of samples reduced with dithionite, pH 8.5, suggested that at least half of this doublet arose from [4Fe-4S]2+ clusters. The second major component exhibited in the Mössbauer spectra arose from high-spin ferrous ions (10%-30%). The third major component (15%) came from iron exhibiting magnetic hyperfine interactions and is likely reflected in the Fe-containing species observed by EPR. The results presented here suggest that mitochondria contain ~ 600 õM of Fe overall, ~ 200 â 400 õM organized as [4Fe-4S]2+ clusters, with about 25 õM due to the [4Fe-4S]2+ cluster of aconitase. Approximately 60 õM â 200 õM of the Fe in mitochondria is high-spin ferrous ions, ~ 40 õM as the Rieske S = 1/2 [2Fe-2S]+ cluster of cytochrome bc1, and ~20 õM as the S = 1/2 [2Fe-2S]+ cluster of succinate dehydrogenase. The high-spin ferric hemes of the a3:CuB site of cytochrome oxidase and cytochrome c peroxidase each account for ~ 4 õM of Fe.
|
6 |
Spectroscopic and analytical characterization of the distribution of iron in intact mitochondria from Saccharomyces cerevisiaeHudder, Brandon Neal 30 October 2006 (has links)
Electron paramagnetic resonance (EPR) and Mössbauer spectroscopy were used to examine the distribution of iron in mitochondria from Saccharomyces cerevisiae. These organelles were packed into EPR and Mössbauer cuvettes, affording spectra with unprecedented signal/noise ratios. EPR spectra of as-isolated intact mitochondria exhibited fourteen distinct signals, some of which were assigned according to previously reported g-values obtained using isolated proteins. Signals from adventitious manganese (II) and iron (III) were largely removed when mitochondria were isolated in buffers supplemented with the metal chelators EDTA or EGTA. Signals were simulated and intensities were quantified to afford spin concentrations and estimates of the concentration of EPR-active species in mitochondria. The effects of treating samples with chemical modifiers were examined. Packed samples were analyzed for protein and metal content, affording averaged values of 50 mg/mL [protein], 590 õM [Fe], 340 õM [Cu], and 17 õM [Mn]. 57Fe-enriched intact mitochondria isolated in the presence of metal chelators exhibited Mössbauer spectra dominated by three components. Approximately 60% of the 57Fe in the sample gave rise to a quadrupole doublet, most of which was diamagnetic. The parameters of this doublet are typical of S = 0 [4Fe-4S]2+ clusters and S = 0 ferrous heme groups. Spectra of samples reduced with dithionite, pH 8.5, suggested that at least half of this doublet arose from [4Fe-4S]2+ clusters. The second major component exhibited in the Mössbauer spectra arose from high-spin ferrous ions (10%-30%). The third major component (15%) came from iron exhibiting magnetic hyperfine interactions and is likely reflected in the Fe-containing species observed by EPR. The results presented here suggest that mitochondria contain ~ 600 õM of Fe overall, ~ 200 â 400 õM organized as [4Fe-4S]2+ clusters, with about 25 õM due to the [4Fe-4S]2+ cluster of aconitase. Approximately 60 õM â 200 õM of the Fe in mitochondria is high-spin ferrous ions, ~ 40 õM as the Rieske S = 1/2 [2Fe-2S]+ cluster of cytochrome bc1, and ~20 õM as the S = 1/2 [2Fe-2S]+ cluster of succinate dehydrogenase. The high-spin ferric hemes of the a3:CuB site of cytochrome oxidase and cytochrome c peroxidase each account for ~ 4 õM of Fe.
|
7 |
Mössbauer study of the hyperfine magnetic field and electric field gradient at Fe sites in synthetic diamond.Govender, Nadaraj. January 1992 (has links)
Mossbauer Spectroscopy has been used to investigate the
site of Fe inclusions in a suite of synthetic diamonds (de
Beers MDAS). Information on the hyperfine magnetic fields
and electric field gradients at Fe sites in the diamond
grains were obtained from Mossbauer Spectroscopy of diamond
grains ranging in size from 25 to 250 um. The Fe inclusions
in these samples resulted from the synthesis of the diamond
grains in which Fe was used as a catalytic solvent. The
Mossbauer measurements were carried at room temperature
with a constant acceleration spectrometer operating in
transmission geometry.
The samples with the largest grain size of 180-250 um gave
a well defined six component magnetically split spectrum,
similar to the Zeeman split sextet obtained for natural
iron. As the grain sizes decreased the intensity of
the magnetically split components became greatly reduced
and a strong paramagnetic component appeared. At grain
sizes 105-45 um the spectra are dominated by a central
single line with some evidence of an asymmetric doublet.
For the finest grain size 38-25 um, the reappearance of
the six magnetic hyperfine splitting components together
with the strong central single paramagnetic component was
observed.
The change in the Mossbauer patterns observed with decreasing
grain size suggest that a rapid phase transition of the
Fe inclusions from ferromagnetic to superparamagnetic
takes place.
The analysis of Mossbauer spectra yielded a value of the
hyperfine magnetic field of Bhf = -32.4(4) T and an
electric field gradient in the range of Vzz = 1.4(4) 1.8(
7) X 10'8 V.cm- 2 at the site of the probe s7Fe
nucleus. These values compare favourably with other
measurements. / Thesis (M.Sc.)-University of Durban-Westville, 1992.
|
8 |
Moessbauer spectroscopy on the Apple computerMoody, Kevin L. January 1988 (has links)
Software for Moessbauer spectroscopy has been developed for use on the Apple computer. This software is capable of collecting and fitting Moessbauer data when the Apple computer is interfaced with the ND2200 series multichannel analyzer. The software was tested in a study of the feasibility of using Moessbauer spectroscopy to study glass. Results indicate that iron in brown commercial glass and the volcanic glasses behaves similarly. This study concludes that Moessbauer spectroscopy is a promising method for the study of natural and archeological glasses and quality control in the manufacture of commercial glass. / Department of Physics and Astronomy
|
9 |
Conversion electron line shape analysis and applications to Mossbauer spectroscopy /Miller, Robert Bruce January 1973 (has links)
No description available.
|
10 |
Conversion electron line shape analysis and applications to Mossbauer spectroscopy /Miller, Robert Bruce January 1973 (has links)
No description available.
|
Page generated in 0.0479 seconds