• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 3
  • 1
  • Tagged with
  • 31
  • 31
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in clay minerals

Schaefer, Michael Vernon 01 May 2010 (has links)
Although interfacial electron transfer has been shown to occur for sorbed Fe(II) and Fe-oxides, it is unclear if a similar reaction occurs between sorbed Fe(II) and Fe(III)-bearing clay minerals. Here, we use the isotope specificity of 57Fe Mössbauer spectroscopy to demonstrate electron transfer between sorbed Fe(II) and structural Fe(III) in a nontronite clay mineral (NAu-2). Appearance of an Fe(II) doublet in the NAu-2 spectra after reaction with aqueous 56Fe(II) (56Fe is transparent in Mössbauer spectra) provided evidence for reduction of structural Fe(III). Mössbauer spectra using enriched 57Fe(II) reveal that Fe(II) is oxidized upon sorption to NAu-2, and the oxidation product of this reaction is a ferric oxide with spectral parameters similar to lepidocrocite. The reduction of structural Fe(III) by Fe(II) induces electron delocalization in the clay structure, which we observe by variable-temperature Mössbauer spectra and macroscopic color change indicative of Fe(II)-Fe(III) pairs. The extent of structural Fe(III) reduction in NAu-2 is equal to the amount of Fe(II) sorbed until approximately 15% reduction, after which point reduction is no longer concomitant with the amount of sorbed Fe(II).
12

Nanočástice na bázi oxidů 3d kovů - korelace struktury a magnetismu / Nanoparticles based on 3d metal oxides - correlation of structure and magnetism

Kubíčková, Simona January 2015 (has links)
Title: Nanoparticles based on 3d metal oxides - correlation of structure and magnetism Author: RNDr. Simona Kubíčková Department: Institute of Physics CAS, v.v.i. Supervisor: doc. RNDr. Jana Kalbáčová Vejpravová, Ph.D., Institute of Physics CAS, v.v.i. Abstract: The thesis is focused on the correlation of the magnetic response of iron oxide nanoparticles (NPs) with their internal structure. Several complementary methods were used and compared that bring insight into the relative crystallinity of the investigated NPs. The main goal was devoted to the elucidation of the origin of the so-called spin canting angle determined by In-field Mössbauer Spectroscopy (IFMS) by examination of samples with different internal structure. It has been observed that the IFMS is not an unambiguous method to study the surface effects in the NPs as the IFMS is sensitive only to the average value of all spins and does not distinguish between the surface and core effects. Moreover, the IFMS was performed on the epsilon phase of the iron(III) oxide NPs in order to inspect the peculiar behavior of this phase in an external magnetic field. Keywords: iron oxide nanoparticles, magnetism, In-field Mössbauer Spectroscopy, spin canting
13

The design and construction of a constant acceleration drive system for Mössbauer experiments

Russell, James Donald 01 January 1970 (has links)
An excited nucleus may undergo a transition to its ground state by the emission of a gamma ray. The nucleus, if free to do so, will recoil and take some of the transition energy as recoil energy leaving less energy for the emitted gamma ray. This gamma ray does not have enough energy to excite a similar nucleus and will, therefore, not by resonantly absorbed due to the fact that the natural linewidth of the gamma ray is so much smaller than the energy taken by the emitting atom and the similar energy needed by the absorbing atom. In 1958 a new effort in the emission and absorption processes of low energy gamma rays was announced by Rudolph L. Mössbauer. His discovery was made while he was doing graduate work at Heidelberg, Germany. Since that time this effect, not known as the Mössbauer effect, has been studied and confirmed in many laboratories. By 1961 the significance and usefulness of this effect was so widely recognized that Rudolph Mössbauer was awarded the Nobel Prize. The new effect involves recoil free emission and resonant absorption of low energy gamma rays by atoms tightly bound in a crystalline lattice. The characteristics of the Mössbauer effect have led to the feasibility of studies previously not possible in nuclear-. Solid taste-, and atomic physics; chemistry; and biology. It is the purpose of this research project to design and build a Mössbauer effect apparatus.
14

Antiperovskite Oxide Sr3-xSnO: Discovery of Superconductivity and Its Evolution with Deficiency / 逆ペロブスカイト酸化物Sr3-xSnOの超伝導の発見とその欠損量依存性

Oudah, Mohamed 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20890号 / 理博第4342号 / 新制||理||1623(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前野 悦輝, 教授 佐藤 昌利, 教授 石田 憲二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
15

Dopage de la polyaniline et ses dérivés avec acides des Lewis - syntheses et proprietes spectroscopiques.

Bienkowski, Krzysztof 17 March 2006 (has links) (PDF)
Ce travail est consacré à l'étude du dopage de la polyaniline et de ses dérivés substitutés (polyanisidine, poly(2-ethylaniline)) avec d'une part le chlorure d'aluminium AlCl3 ou le chlorure ferrique FeCl3, d'autre part avec leurs dérivés contenant les ligands mixtes chlorure-acétylacétonate (AlCl2(acac) ou (FeCl(acac)2). Les polymères dopés avec AlCl3 ou FeCl3 sont conducteurs, et leur conductivité électronique est de l'ordre de 10-3 S/cm. Des études spectroscopiques complémentaires (UV-VIS-Proche IR, IRTF, RPE, RMN du noyau 27Al (dans le cas du dopage avec AlCl3) et spectroscopie Mössbauer sur le noyau 57Fe (dans le cas du dopage avec FeCl3)), combinées avec l'analyse élémentaire, permettent de comprendre et d'identifier un même mécanisme de dopage. Celui-ci correspond en un premier temps à une dissociation de la molécule du dopant. La partie cationique résultant de cette dissociation est complexée sur les sites azote de type imine de la chaîne du polymère, tandis que la partie anionique s'incorpore à la matrice polymère afin de neutraliser la charge positive imposée à la chaîne du polymère. La sphère de coordination du complexe cationique est complétée par solvatation avec une molécule de nitrométhane. Le réarrangement des charges accompagnant le processus de dopage entraîne la création de radicaux cationiques mobiles sur la chaîne du polymère, donnant ainsi au polymère dopé des propriétés de conduction électronique. Ce mécanisme rend parfaitement compte de la présence de porteurs de charge et de la structure cationique des radicaux de la chaîne polymérique dopée mises en évidence par les expériences de spectroscopie RPE et d'absorption UV-VIS-Proche IR. La polyaniline dopée avec FeCl3 présente de faibles propriétés mécaniques, qui peuvent cependant être améliorées par un traitement ultérieur avec l'hexafluoroacetylacetone (HFAA). Ce traitement conduit à la transformation de la polyaniline dopée avec FeCl3 (acide de Lewis) en un polymère dopé avec HFeCl4 (acide de Brönsted), simultanément plastifié par HFAA. Le dopage avec les ligands mixtes (AlCl2(acac) ou (FeCl(acac)2), bien qu'inopérant en ce qui concerne la polyaniline, conduit clairement au dopage de la polyanisidine et de la poly(2-éthylaniline). Les chaînes de ces polymères dopés présentent une structure radicalaire cationique mise en évidence par les expériences d'absorption UV-VIS-Proche IR ; mais le mécanisme de dopage reste plus complexe à définir que dans le cas du dopage avec AlCl3 ou FeCl3. Le dopage avec AlCl2(acac) conduit à un polymère dopé avec AlCl3 avec Al(acac)3 incorporé à la matrice du polymère comme sous-produit. Le dopage avec FeCl(acac)2 donne un composé présentant davantage de sites de fer non équivalents qu'il en est attendu ; leur nature reste difficile à identifier par spectrométrie Mössbauer.
16

Probing Iron Accumulation in Sacchromyces cerevisiae Using Integrative Biophysical and Biochemical Techniques

Miao, Ren 2010 December 1900 (has links)
Iron is an essential element for life. It is involved in a number of biological processes, including iron sulfur (Fe/S) cluster assembly and heme biosynthesis. However it is also potentially toxic due to its ability to induce formation of reactive oxygen species (ROS) via Fenton chemistry. Therefore its uptake, trafficking and utilization must be regulated to avoid its toxicological effect. It has been recently discovered that Fe/S cluster biosynthesis machinery plays a key role in the cellular iron regulation and its disruption leads to impaired iron regulation and iron accumulation within mitochondria. The iron accumulation resulted from impaired Fe/S cluster assembly in the eukaryotic model organism Saccharomyces cerevisiae (baker’s yeast) was studied. Various biophysical (e.g. Mössbauer, EPR, UV-vis spectroscopy) and biochemical (e.g. Western blots, PCR, enzyme activity assay, etc.) techniques were used to characterize the iron content in yeast mitochondria isolated from several mutants strains. In these mutants one of the proteins involved in Fe/S cluster biosynthesis (Yah1p and Atm1p) is mutated and iron regulation and metabolism are disrupted. By integrating the results obtained from these different methods, it was determined that excess iron accumulates in the mutant mitochondria as inorganic phosphate Fe(III) nano-particles exhibiting superparamagnetic behaviors. Oxygen is required for iron accumulation and nanoparticle formation. The Fe(III) nano-particles can be chemically reduced to Fe(II) then largely exported from the mitochondria. These biophysical and biochemical methods were also used to examine the iron distribution in whole yeast cells of the Aft1-1up strain in which iron regulon genes are constitutively activated and compared to that of Yah1p-depleted and wild type yeast. Constitutive activation of iron regulon genes does not alter the cellular iron distribution significantly. However disruption of Fe/S cluster assembly by Yah1p depletion causes dramatic cellular iron redistribution: the vacuolar iron is largely evacuated and most of the cellular iron probably precipitates in mitochondria as Fe(III) nanoparticles. The results provide novel insights into iron trafficking and possible signal communications between organelles within cells.
17

Atomic and nuclear interference phenomena and their applications

Kuznetsova, Yelena Anatolyevna 29 August 2005 (has links)
In this work, interference and coherence phenomena, appearing in atomic and molecular ensembles interacting with coherent light sources, as electromagnetically induced transparency (EIT), coherent population trapping (CPT), and slow group velocity of light are investigated. The goal of the project is to make the steps towards various applications of these phenomena, first, by studying them in solid media (which are the most advantageous for applications), second, by suggesting some novel applications such as CPT-based plasma diagnostics, and realization of new types of solid-state lasers (based on suppression of excited-state absorption via EIT). The third goal of the project is extension of coherence and interference effects well-known in optics to the gamma-ray range of frequencies and, correspondingly, from atomic to nuclear transitions. A particular technique of chirped pulse compression applied to M??ossbauer transitions is considered and the possibility of compression of M??ossbauer radiation into ultrashort gamma-ray pulses is analyzed. The theoretical treatment of the interference and coherence effects is based on the semiclassical description of atom-light interaction, which is sufficient for correct analysis of the phenomena considered here. Coherent media are considered in two-, three-, and four-level approximations while their interaction with light is studied both analytically and numerically using the Maxwell-Bloch set of equations.
18

Chemical Reduction of Silicates by Meteorite Impacts and Lightning Strikes

Sheffer, Abigail Anne January 2007 (has links)
A suite of lightning strike glasses and unmelted starting materials has been studied by electron microscope and Mossbauer spectroscopy to determine Fe oxidation states. Nine of eleven samples are reduced compared to the starting materials; four of the glasses contain Fe0. Only one sample contained evidence of reduction by carbon, and the results support the reduction of Fe as intrinsic to the rapid, high temperature processing during lightning strikes.A thermodynamic modeling code is used to model the formation of moldavite tektites and the reduction of Fe from sediments around the Ries crater. During isentropic cooling from a strong shock, Fe3+ is reduced to Fe2+ at all modeled conditions. The best matches to an average moldavite composition and the compositions of the Bohemian and Bohemian:Radomilice sub-strewn fields occur with a mixture of surface and subsurface sands along a 4500 J/kg-K isentropic cooling path, consistent with an asteroid impact. The Lusatian and Moravian sub-strewn fields are better represented by starting materials of entirely surface sands, consistent with the uppermost layers of surface material having traveled the farthest from the impact.The thermodynamic code is also used to investigate the formation of lunar regolith agglutinates and reduction of Fe to Fe0. Forming Fe0 requires assuming Fe0 is miscible in silicate liquid at elevated temperatures and pressures. When Fe0 is included in the liquid solution, it is stable at modeled conditions. Simple separation of liquid from vapor is not sufficient to reproduce agglutinate glass. When the vapor phase is allowed to partially redeposit and some Fe0 is directly condensed from vapor, the resulting liquid better reproduces mare agglutinate glasses. This model cannot reproduce highland agglutinate glass, because the Al concentration remains too high in the liquid. The best match to mare glass is produced using the <10 µm fraction of the mare soil along the 8000 J/kg-K cooling isentrope at 100 bars, 4370 K with 95% vapor redeposition and 50% of the Fe(g) directly condensed as Fe0. The reduced fulgurite samples and the results of the impact models suggest that Fe reduction is intrinsic to the rapid, high temperature processing of silicates.
19

Mossbauer spectroscopy and x-ray diffraction study of (Cd, Zn) substituted mixed ferrites.

Msomi, Justice Zakhele. January 2002 (has links)
The study of magnetic properties and structures of Zn and Cd substituted mixed ferrites has been carried out using Mossbauer spectroscopy and X-ray diffraction on powdered samples at about 300 K. Two series of mixed ferrites, (Cd, Zn)xCol-xFe2-xAlxO4 and (Cd, Zn)xCo0.9Fe1.7-xTi0.4O 4 (where 0≤ x≤1.0) were synthesized. In the former series the effect of simultaneous site dilution by Zn or Cd and Ai atoms on tetrahedral (A) and octahedral (B) sites is investigated and in the latter the effect of single site dilution by Zn or Cd is also studied. The Mossbauer spectra show that the compounds transform with increase in x from ordered to disordered magnetic states. Systematic decrease in the hyperfine fields indicating weakening of the magnetic coupling with an increase in x is observed. We report the presence of a cross over effect with respect to the hyperfine fields on A and B sites at low concentration of diamagnetic ions in the simultaneously diluted series. Both series of compounds show no significant changes in isomer shifts with x. Differences in the evolution of Fe atoms on A and B sites between Zn and Cd based compounds are observed. The results of our analysis show that Zn and Cd ions occupy both tetrahedral and octahedral sites. The spinel structure of the compounds studied in this work is confirmed by X-ray diffraction (XRD). The lattice parameters derived from XRD show systematic change with x consistent with Vergard's law. In Cd based samples an increase of the lattice parameter with x is explained on the basis of the size difference of the cations involved. However, an anomalous behavior of the lattice parameter is observed in Zn based samples. The average grain sizes of the samples were determined from the line width of the (311) XRD intensity lines using the Scherrer formula. These vary between 50 nm and 70 nm for all the samples except for Zn and Al substituted samples which show a systematic anomalous reduction for x ≥ 0.4 in grain size. The porosity, x-ray and bulk densities of the samples are also presented. / Thesis (M.Sc.)-University of Natal, Durban, 2002.
20

Bioinspired Synthesis and Reactivity Studies of Nitric Oxide Iron Complexes

Hess, Jennifer 2011 December 1900 (has links)
The significant role that nitric oxide plays in human physiology is linked to the ability of NO to bind to iron forming mono-nitrosyl iron complexes. Protein-bound and low-molecular-weight dinitrosyl iron complexes (DNICs) are known to form in excess NO. Studies of such biological DNICs have relied on their paramagnetism and characteristic EPR signal of g value of 2.03. It has been suggested that DNICs act in vivo as NO storage (when protein-bound) and transfer agents (when released by, for example, free cysteine). Biological DNICs, mainly resulting from iron-sulfur cluster degradation, are difficult to extract and isolate, thereby preventing their full characterization. Thus, development of synthetic DNICs is a promising approach to model and better understand the formation and function of biological DNICs, the scope of donor ligands that might coexist with Fe(NO)2 units, the redox levels of bio-DNICs, and establish other spectroscopic techniques appropriate for characterization. A series of N-heterocyclic carbene (NHC) and imidazole (Imid) complexes has been characterized as mimics of histidine-containing DNICs. The pseudo-tetrahedral L2Fe(NO)2 complexes have NO stretching frequencies and redox potentials that suggest the NHCs are slightly better donors than Imids, however the two types of ligands have similar steric properties. Both the EPR-active, {Fe(NO)2}9 and the EPR-silent, {Fe(NO)2}10 states can be accessed and stabilized by the NHC. Nitric oxide transfer studies have shown that only the {Fe(NO)2}9 complexes are capable of transferring NO to a suitable NO trapping agent. Deprotonation of the distal nitrogen functionality in the imidazolate ligands of [(Imidazole)2Fe(NO)2]- leads to aggregation forming molecular squares of {Fe(NO)2}9 units bridged by the imidazolates. These interesting tetrameric complexes are examined by X-ray diffraction, EPR, and Mössbauer studies. The paramagnetic tetrameric complexes have multiple redox events observed by cyclic voltammetry. Mössbauer spectral data of the tetrameric complexes are compared with Mössbauer data obtained for a series of NHC-containing DNICs. Iron and cobalt-containing mononitrosyl N2S2 model complexes of the nitrile hydratase enzyme active site demonstrate sulfur-based reactivity resulting in the formation of polymetallic complexes. In all cases, shifts in the nitrosyl stretching frequencies demonstrate substantial transfer of electron density from the (NO)M(N2S2) moiety to the metal-acceptor site.

Page generated in 0.0771 seconds