• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 12
  • 9
  • 9
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 104
  • 23
  • 20
  • 19
  • 15
  • 15
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Das survival of motoneuron (SMN) Protein und axonales Wachstum : Bedeutung für die molekulare Pathologie der spinalen Muskelatrophie

Bergeijk, Jeroen van January 2007 (has links) (PDF)
Hannover, Univ., Diss., 2007
42

A Single Neuron Model to Study the Mechanisms and Functions of Dendritic Development

January 2012 (has links)
abstract: Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult motoneuron, MN5, in Drosophila melanogaster was used. This dissertation presents the following results. First, the natural variability of morphological parameters of the MN5 dendritic tree in control flies is not larger than 15%, making MN5 a suitable model for quantitative morphological analysis. Second, three-dimensional topological analyses reveals that different parts of the MN5 dendritic tree innervate spatially separated areas (termed "isoneuronal tiling"). Third, genetic manipulation of the MN5 excitability reveals that both increased and decreased activity lead to dendritic overgrowth; whereas decreased excitability promoted branch elongation, increased excitability enhanced dendritic branching. Next, testing the activity-regulated transcription factor AP-1 for its role in MN5 dendritic development reveals that neural activity enhanced AP-1 transcriptional activity, and that AP-1 expression lead to opposite dendrite fates depending on its expression timing during development. Whereas overexpression of AP-1 at early stages results in loss of dendrites, AP-1 overexpression after the expression of acetylcholine receptors and the formation of all primary dendrites in MN5 causes overgrowth. Fourth, MN5 has been used to examine dendritic development resulting from the expression of the human gene MeCP2, a transcriptional regulator involved in the neurodevelopmental disease Rett syndrome. Targeted expression of full-length human MeCP2 in MN5 causes impaired dendritic growth, showing for the first time the cellular consequences of MeCP2 expression in Drosophila neurons. This dendritic phenotype requires the methyl-binding domain of MeCP2 and the chromatin remodeling protein Osa. In summary, this work has fully established MN5 as a single-neuron model to study mechanisms underlying dendrite development, maintenance and degeneration, and to test the behavioral consequences resulting from dendritic growth misregulation. Furthermore, this thesis provides quantitative description of isoneuronal tiling of a central neuron, offers novel insight into activity- and AP-1 dependent developmental plasticity, and finally, it establishes Drosophila MN5 as a model to study some specific aspects of human diseases. / Dissertation/Thesis / Ph.D. Neuroscience 2012
43

Molecular mechanisms of zebrafish motoneuron development

Hale, Laura Ann, 1978- 12 1900 (has links)
xv, 83 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation describes research to identify genes involved in specification, patterning and development of zebrafish primary motoneurons. We first examined the spatiotemporal expression patterns of retinoic acid and retinoid X receptor mRNAs to determine whether particular ones might be involved in motoneuron specification or patterning. Retinoic acid and retinoid X receptor mRNAs are expressed at the right time to pattern motoneurons, but the expression patterns did not suggest roles for particular receptors. In contrast, netrin mRNAs are expressed in specific motoneuron intermediate targets and knockdown experiments revealed an important role in development of VaP motoneurons. Two identified motoneurons, CaP and VaP, initially form an equivalence pair. CaPs extend long axons that innervate ventral muscle. VaPs extend short axons that stop at muscle fibers called muscle pioneers; VaPs later typically die. Previous work showed that during extension, CaP axons pause at several intermediate targets, including muscle pioneers, and that both CaP and muscle pioneers are required for VaP formation. We found that mRNAs for different Netrins are expressed in intermediate targets before CaP axon contact: netrin 1a in muscle pioneers, netrin 1b in hypochord, and netrin 2 in ventral somite. We show that Netrins are unnecessary to guide CaP axons but are necessary to prevent VaP axons from extending into ventral muscle. Netrin 1a is necessary to stop VaP axons at muscle pioneers, Netrin 1a and Netrin 2 together are necessary to stop VaP axons near the hypochord, and Netrin 1b appears dispensable for CaP and VaP development. We also identify Deleted in colorectal carcinoma as a Netrin receptor that mediates the ability of Netrin 1a to cause VaP axons to stop at muscle pioneers. Our results suggest Netrins refine axon morphology to ensure final cell-appropriate axon arborization. To learn whether Netrin proteins diffuse away from their sources of synthesis to function at a distance, we are developing Netrin antibodies. If successful, the antibodies will provide the research community at large with a new tool for understanding in vivo Netrin function. This dissertation includes both my previously published and unpublished coauthored material. / Committee in charge: Monte Westerfield, Chairperson, Biology Judith Eisen, Advisor, Biology; Victoria Herman, Member, Biology; John Postlethwait, Member, Biology; Clifford Kentros, Outside Member, Psychology
44

Atteinte différentielle de deux populations de motoneurones spinaux chez le souriceau SOD1 G93A (modèle de la maladie de Charcot) / Differential abnormalities of two spinal motoneuron populations in the SOD1 G93A neonatal mouse (model of the amyotrophic lateral sclerosis)

Leroy, Félix 06 December 2013 (has links)
La deuxième semaine qui suit la naissance est critique pour le développement du système locomoteur de la souris. C’est pendant cette semaine que les souriceaux acquièrent leur posture et commencent à marcher. Cette transformation implique une réorganisation en profondeur des éléments composant les unités motrices. Cependant, nous ne savons encore que peu de choses sur la différenciation des propriétés intrinsèques des motoneurones innervant les fibres musculaires. Contrairement à l’adulte, où la décharge démarre au début de la stimulation, les motoneurones de souriceaux déchargent de façon hétérogène. En effet, une stimulation au seuil induit chez certains motoneurones une décharge commençant au début du créneau alors que la décharge est retardée dans d’autres motoneurones. Par des enregistrements de motoneurones sur des tranches de moelle épinière à P6-P10, j’ai dans un premier temps caractérisé les courants sous‐tendant la décharge retardée et j’ai constaté que deux conductances potassiques (l’une ressemblant au courant de type A et l’autre très lente) étaient activées autour du seuil de décharge. Lorsqu’elles s’activent, ces conductances sont capables d’hyperpolariser le potentiel de membrane et d’empêcher le motoneurone de décharger. Puis, en s’inactivant, la membrane se dépolarise et le neurone commence à décharger avec un retard pouvant aller jusqu’à plusieurs secondes après le début du créneau. En outre, les deux populations de motoneurones présentent des propriétés électro-physiologiques et morphologiques différentes. Les motoneurones à décharge retardée possèdent un arbre dendritique plus ramifié que ceux à décharge immédiate. En conséquence, les motoneurones à décharge retardée possèdent une conductance d’entrée et un seuil de recrutement plus faible. De plus le temps de relaxation de l’hyperpolarisation suivant chaque potentiel d’action (AHP) est plus long dans les motoneurones à décharge immédiate. Enfin, une partie des motoneurones à décharge retardée exprime la protéine chondrolectine récemment décrite comme un marqueur moléculaire des motoneurones de type rapide. L’ensemble de nos résultats nous permet de faire l’hypothèse que les motoneurones à décharge retardée sont des motoneurones innervant les unités motrices de type rapide alors que ceux à décharge immédiate innervent les unités motrices de type lent. Dans un second temps, j’ai étudié l’effet de la mutation SOD1 G93A, un modèle murin de la sclérose latérale amyotrophique, sur les motoneurones spinaux à P6‐P10. Sachant que cette maladie affecte les motoneurones de façon différente à l’âge adulte, j’ai cherché à savoir si, chez les souriceaux SOD1 G93A, les motoneurones à décharge retardée et immédiate étaient affectés de la même façon. Mes résultats montrent que seuls les motoneurones à décharge immédiate sont hyperexcitables. Pour ces motoneurones, le seuil de décharge est plus hyperpolarisé et leurs dendrites sont plus courtes de 35%. Ces résultats amènent à reconsidérer le lien supposé entre hyperexcitabilité et dégénérescence des motoneurones. / In the second postnatal week, the locomotor behavior of mice changes from crawling to walking. This is made possible by profound changes in motor units. Yet, how the discharge properties of spinal motoneurons evolve during post-­‐natal maturation and whether they have an effect on the motor unit maturation remains an open question. In neonates, the spinal motoneurons display two modes of discharge. For threshold pulses, 33% of the motoneurons have a discharge that start at the current onset and adapts during the pulse (“immediate firing motoneurons”). The remaining 66% motoneurons fire with a large delay and the discharge then accelerates throughout the pulse (“delayed firing motoneurons”). Though the delayed firing pattern is quite common in spinal motoneurons of neonates, the ionic mechanisms that elicit this mode of discharge have received little attention. Using the patch-clamp technique to record P6‐P10 mouse motoneurons in a spinal cord slice preparation, I characterized the ionic currents that underlie the delayed firing pattern. This is caused by a combination of an A-like potassium current that acts on a short time scale and a slow‐inactivating potassium current that delays the discharge on a much longer time scale. I then investigated how these two potassium currents contribute to the recruitment threshold and how they shape the F-I function of delayed motoneurons in neonatal mice. The slow inactivating potassium current induces memory effects that have a strong impact on motoneuron excitability and on its discharge. Building on these results, I tried to correlate the discharge pattern to known physiological sub‐types. The delayed firing motoneurons have a larger input conductance, a higher rheobase, a narrower action potential, a shorter AHP and a more complex dendritic arbor than the immediate firing motoneurons. Additionally, only a sub-­‐population of the delayed firing motoneurons expressed the chondrolectin protein, a fast motoneuron marker. Based on this body of corroborating evidence, the immediate firing motoneurons would be slow type motoneurons whereas the delayed firing motoneurons would be fast type motoneurons. Finally, numerous electrical and geometrical abnormalities have been observed in spinal motoneurons of SOD1 G934 mice (model of the amyotrophic lateral sclerosis) during the second post-natal week but the results were somehow contradictory. In relation to the known differential sensitivity to the disease exhibited by slow and fast motoneurons, I investigated whether the immediate and delayed firing motoneurons are equally affected by the SOD1 mutation. This is not the case. I found that the SOD1 mutation induced a decrease in the rheobase and a hyperpolarization of the voltage threshold only in the immediate firing motoneurons, thereby making them more excitable than in WT mice. Furthermore, the dendrites of the immediate firing motoneurons are substantially shorter (about 35%) in the mutant than in the WT. In sharp contrast, the excitability of the delayed firing motoneurons is unchanged and the dendritic tree is nearly unaffected (the dendrites only undergo a 10% elongation). These results allow for reconsidering the link between hyperexcitability and degenerescence of the motoneurons
45

Immunoregulation of the central response to peripheral nerve injury: motoneuron survival and relevance to ALS

Setter, Deborah Olmstead 08 March 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Facial nerve axotomy (FNA) in immunodeficient mice causes significantly more facial motoneuron (FMN) loss relative to wild type (WT), indicating that the immune system is neuroprotective. Further studies reveal that both CD4+ T cells and interleukin 10 (IL-10) act centrally to promote neuronal survival after injury. This study first investigated the roles of IL-10 and CD4+ T cells in neuroprotection after axotomy. CD4+ T cell-mediated neuroprotection requires centrally-produced IL-10, but the source of IL-10 is unknown. Using FNA on IL-10 reporter mice, immunohistochemistry was employed to identify the IL-10 source. Unexpectedly, axotomy induced astrocyte production of IL-10. To test if microglia- or astrocyte-specific IL-10 is needed for neuroprotection, cell-specific conditional knockout mice were generated. Neither knockout scenario affected FMN survival after FNA, suggesting that coordinated IL-10 production by both glia contributes to neuroprotection. The effect of immune status on the post-FNA molecular response was studied to characterize CD4+ T cell-mediated neuroprotection. In the recombinase-activating gene2 knockout (RAG-2-/-) mouse model of immunodeficiency, glial microenvironment responses were significantly impaired. Reconstitution with CD4+ T cells restored glial activation to normal levels. Motoneuron regeneration responses remained unaffected by immune status. These findings indicate that CD4+ T cell-mediated neuroprotection after injury occurs indirectly via microenvironment regulation. Immunodysregulation is evident in amyotrophic lateral sclerosis (ALS), and FMN survival after FNA is worse in the mutant superoxide dismutase (mSOD1) mouse model of ALS. Further experiments reveal that mSOD1 CD4+ T cells are neuroprotective in RAG-2-/- mice, whereas mSOD1 whole splenocytes (WS) are not. The third aim examined if the mSOD1 WS environment inhibits mSOD1 CD4+ T cell glial regulation after axotomy. Unexpectedly, both treatments were equally effective in promoting glial activation. Instead, mSOD1 WS treatment induced a motoneuron-specific death mechanism prevalent in ALS. In conclusion, the peripheral immune system regulates the central glial microenvironment utilizing IL-10 to promote neuronal survival after axotomy. Astrocytes, specifically, may be responsible for transducing peripheral immune signals into microenvironment regulation. Additionally, the immune system in ALS may directly participate in disease pathology.
46

The Role of Interleukin-10 in CD4+ T Cell-Mediated Neuroprotection after Facial Nerve Injury

Runge, Elizabeth Marie 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The adaptive arm of the immune system is necessary for facial motoneuron (FMN) survival after facial nerve axotomy (FNA). CD4+ T cells mediate FMN survival after FNA in an interleukin-10 (IL-10) dependent manner, but are not themselves the cellular source of neuroprotective IL-10. The aims of this study are to elucidate the neuroprotective capacity of cell-specific IL-10 expression, and to investigate the manner in which CD4+ T cells participate in IL-10 signaling after FNA. Immunohistochemistry revealed that FMN themselves were constitutive producers of IL-10, and astrocytes were induced to make IL-10 after FNA. Il10 mRNA co-localized with microglia before and after axotomy, but microglial production of IL-10 protein was not detected. To determine whether any single source of IL-10 is critical for FMN survival, Cre/Lox mouse strains were utilized to selectively knock out IL-10 in neurons, astrocytes, and microglia. In agreement with the localization data reflecting concerted IL-10 production by multiple cell types, no single cellular source of IL-10 was necessary for FMN survival. Gene expression analysis of wild-type, immunodeficient, and immune cell-reconstituted animals was performed to determine the role of the immune system in modulating the central IL-10 signaling cascade. This revealed that CD4+ T cells were necessary for full upregulation of central IL-10 receptor (IL-10R) expression after FNA, regardless of their own IL-10R beta (IL-10RB) expression or IL-10R signaling capability. Surprisingly, the ability of CD4+ T cells to respond to IL-10 was critical for their ability to mediate neuroprotection. Adoptive transfer of IL-10RB-deficient T cells resulted in increased central expression of genes associated with microglial activation, antigen presentation, T cell co-stimulation, and complement deposition in response to injury. These data suggest that IL-10RB functions on the T cell to prevent non-neuroprotective immune activation after axotomy. The conclusions drawn from this study support a revised hypothesis for the mechanisms of IL-10-mediated neuroprotection, in which IL-10 serves both trophic and immune-modulating roles after axotomy. This research has implications for the development of immune-modifying therapies for peripheral nerve injury and motoneuron diseases. / 2 years (2021-05-24)
47

Development and analysis of a Zebrafish model of spinal muscular atrophy

McWhorter, Michelle L. 02 December 2005 (has links)
No description available.
48

Modulation of the Ia Input- Motoneuron Output Relationship of Human Flexor Carpi Radialis During Muscle Contraction

Fu, Winnie 06 1900 (has links)
<p> A novel method has been developed to determine the quantitative relationship between the percentage ofla fibres stimulated synchronously, and the percentage of human flexor carpi radialis (FCR) motoneurons (MNs) discharged reflexly. The method assumes a normal distribution of Ia fibre thresholds to electrical stimulation. Among the 11 healthy subjects tested during relaxation, there were considerable differences in the reflex excitability of the FCR MNs to quantitative Ia fibre inputs. The Ia fibre input-FCR MN output curves were either initially steeply-rising, initially slowly-rising, or initially and latterly steeply-rising. When the results were averaged, however, the curve for the 11 subjects in the relaxed state appeared to be fairly linear throughout the entire range of the Ia fibre inputs, and a mean of82% of the Ia fibres discharged approximately 20% of theMNs. </p> <p> Regardless of the variability in the shape of individual input-output curves during relaxation, potentiation of the FCR MN output was observed during weak wrist flexion in 10 of the 11 subjects over the full range of the Ia fibre inputs. In contrast, a depression of the MN output was exhibited in all 8 subjects who weakly contracted the extensors over the full range of the Ia fibre inputs. The changes in the Ia input-MN output relationship in going from rest to voluntary contractions of wrist muscles are thought to reflect modulation by presynpatic inhibition of the Ia terminals. With very large Ia inputs during wrist extension, however, there is a steep rise in the input-output curve, which could indicate a decrease in presynaptic inhibition of Ia terminals in the FCR muscle. The modulation ofthe input-output relationship observed in the present study is consistent with the task-dependent differences of reflex excitability observed by Stein et al. (1988). </p> / Thesis / Master of Applied Science (MASc)
49

Mitochondrial metabolism in hypoglossal motoneurons from mouse – implications for amyotrophic lateral sclerosis (ALS) / Mitochondrialer Metabolismus in hypoglossalen Motoneuronen der Maus - Bedeutung für die Amyotrophe Lateral Sklerose (ALS)

Bergmann, Friederike 12 February 2004 (has links)
No description available.
50

Implication de la Calréticuline et de CRMP4 dans la dégénérescence des motoneurones dans la Sclérose Latérale Amyotrophique

Bernard, Nathalie 24 October 2011 (has links)
La Sclérose Latérale Amyotrophique se caractérise par la perte sélective de motoneurones (MNs) du cortex, du tronc cérébral et de la moelle épinière. Les souris surexprimant le gène humain muté codant pour la superoxide dismutase 1 (mSOD1) constitue un bon modèle d'étude. Les MNs mSOD1 présentent une hypersensibilité à la mort après activation du récepteur Fas et la production d'oxyde nitrique (NO). Notre étude protéomique a identifié deux effecteurs du NO, la calréticuline (CRT) et CRMP4. CRT est une protéine chaperonne de stockage du calcium dans le réticulum endoplasmique. Nous montrons que, in vivo, CRT diminue de moitié dans une sous population de MNs mSOD1 dits vulnérables, car dégénérant les premiers. Sa diminution est nécessaire et suffisante pour induire la mort des MNs mSOD1 en activant le stress du RE. CRMP4 est une protéine de régulation de la croissance axonale, qui augmente in vivo dans les MNs mSOD1 à un stade pré-symptomatique. Sa surexpression est suffisante pour induire une dénervation périphérique et la dégénérescence de MNs mSOD1. Nos résultats mettent en évidence CRT et CRMP4 comme étant deux cibles thérapeutiques potentielles dans la SLA. / Amyotrophic Lateral Sclerosis (ALS) is characterized by the selective degeneration of upper and lower motoneurons (MNs). The most common familial form and best characterized mouse model of ALS is linked to mutations in the gene coding for the superoxide dismutase 1 (mSOD1). MNs expressing mSOD1 show an increased sensitivity to the death induced by Fas/NO activation. Our proteomic study identified two downstream effectors of NO, Calreticulin (CRT) and CRMP4. CRT is a chaperone-calcium-binding protein of the endoplasmic reticulum, which is decreased two-fold in vivo, in an early degenerating MNs sub-population, named vulnerable. The decrease in CRT expression is both necessary and sufficient to kill mSOD1 MNs through ER stress activation. CRMP4 is a neurite outgrowth regulator which expression is increased in vivo in mSOD1 MNs at a presymptomatic stage. CRMP4 overexpression is sufficient to induce peripheral denervation and, through a dying-back effect, to kill mSOD1 MNs. Our results point out CRT and CRMP-4 as two potential therapeutic targets for ALS.

Page generated in 0.2198 seconds