• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 64
  • 33
  • 26
  • 16
  • 16
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 488
  • 488
  • 71
  • 61
  • 60
  • 59
  • 47
  • 37
  • 35
  • 33
  • 33
  • 33
  • 32
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

On the selection of task solutions under impaired motor control: Short-term effects on functional performance.

Nordbeck, Patric C. 02 June 2020 (has links)
No description available.
262

Neural Mechanisms of Intervention in Residual Speech Sound Disorder

Spencer, Caroline 29 September 2021 (has links)
No description available.
263

The correlation between expressive language delay in children and their motor abilities

Cunningham, Gail G. 01 January 1983 (has links)
The purpose of the present study was to determine the correlation between expressive language delay in children and their gross and fine motor skills. Twenty children five years through six years, eleven months with a diagnosed expressive language delay, were selected to participate in the study. Each was screened on the basis of normal hearing, receptive vocabulary skills, motor functioning, and an expressive language delay of one year or more. After screening procedures, each child was administered the Preschool Language Scale-PLS (Zimmerman, et al., 1969) and the short form of the Bruininks-Oseretsky Test of Motor Proficiency-BOMP (Bruininks, 1978). The data were analyzed using a Pearson Product-Moment Correlation along with means, standard deviations, and a one-tailed t-test of significance.
264

Muscle synergy for coordinating redundant motor system / 筋シナジーに基づく身体運動制御

Hagio, Shota 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第19794号 / 人博第765号 / 新制||人||184(附属図書館) / 27||人博||765(吉田南総合図書館) / 32830 / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 神﨑 素樹, 教授 森谷 敏夫, 教授 石原 昭彦 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
265

Function of the nucleus accumbens in motor control during recovery after spinal cord injury / 脊髄損傷回復期での、側坐核の運動遂行における役割

Sawada, Masahiro 23 January 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20075号 / 医博第4168号 / 新制||医||1018(附属図書館) / 33191 / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邉 大, 教授 林 康紀, 教授 瀬原 淳子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
266

Policy Hyperparameter Exploration for Behavioral Learning of Smartphone Robots / スマートフォンロボットの行動学習のための方策ハイパーパラメータ探索法

Wang, Jiexin 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20519号 / 情博第647号 / 新制||情||112(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 石井 信, 教授 杉江 俊治, 教授 大塚 敏之, 銅谷 賢治 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
267

Biophysical Approaches for the Multi-System Analysis of Neural Control of Movement and Neurologic Rehabilitation

Hulbert, Sarah Marie, HULBERT January 2018 (has links)
No description available.
268

Reliability of a Novel Trunk Motor Neuroimaging Paradigm

Sares, Elizabeth A. 13 June 2019 (has links)
No description available.
269

Kinematic and Kinetic Differences and Asymmetries in Gait in Children with Adolescent Idiopathic Scoliosis

Gariepy, Catherine 01 January 2009 (has links) (PDF)
Adolescent idiopathic scoliosis (AIS) is characterized by a three-dimensional curve within the spine thus creating asymmetries within the trunk. In addition to modifying the trunk geometry, these structural asymmetries change the location of the center of mass. Gait patterns in people with AIS may possibly be altered on the basis of these structural changes. The purpose of this study was to identify differences in gait kinematics and kinetics as well as left-right symmetry as a function of the severity of adolescent idiopathic scoliosis. Forty-five girls divided into a control group, a mild-to-moderate AIS group and a severe AIS group participated in data collection. Gait analysis included bilateral kinematic and kinetic measurements. The maximal joint ranges of motion at the ankle, knee, hip and trunk-pelvis were analyzed. Maxima and minima in the antero-posterior, medio-lateral and vertical components of ground reaction force (GRF) were compared between the three groups as well as the median frequencies obtained from a frequency spectrum analysis of GRF. A symmetry index was computed between the primary curve side and the contralateral side for each kinematic and kinetic variable. Both AIS groups differed from controls in their range of motion at the ankle and at the knee but for the AIS group with severe curves, this was also observed at the hip. Both local maxima in the vertical component and the maximum of the antero-posterior component of the ground reaction force were decreased while the local minimum of the vertical component and the antero-posterior component of GRF increased in the severe AIS group compared to the control group. Higher median frequency contents in the antero-posterior and vertical component of ground reaction force were found in the AIS groups than in controls. No difference in asymmetry was found in any of the variables between all groups. These results seem to indicate that severe AIS participants have a more altered gait pattern than the mild-to-moderate AIS group. Findings from this study point toward greater changes in kinematics and kinetics during stance between all AIS groups and the control group.
270

ADAPTATIONS TO THE FOOT PLACEMENT STRATEGY WHILE  WALKING THROUGH CLUTTERED ENVIRONMENTS

Ashwini Kulkarni (11984720) 07 August 2023 (has links)
<p> A key mechanism to maintain balance during walking is the foot placement strategy,  where the person steps in the direction of an impending fall. On a clear walkway, the foot  placement strategy translates to maintaining a consistent relationship between the center of mass  state and the base of support (a body-centric constraint on foot placement), which is reflected in  a consistent step length. However, to safely navigate in the community, foot placement must  maintain certain spatial relations with environmental features as well (environmental constraints on foot placement). For stepping over obstacles, the environmental constraint takes the form of  targeting. That is, the feet must be placed at precise locations relative to the obstacle to minimize  the likelihood of tripping.  My dissertation focused on proactive adaptations to foot placements while navigating  cluttered environments. I developed the interstep covariation (ISC) index that quantifies the covariation between consecutive foot placements relative to stationary, visible environmental  features (an obstacle and a visual target). The across-step (or group) changes in this index  indicate how the two constraints (body-centric and environmental) on foot placement are  managed during adaptive gait tasks. I quantified how the ISC index changed (1) across steps  while approaching and crossing an obstacle, (2) due to healthy aging and (3) when the proximity  of two environmental features was systematically altered. Specifically, in Study 1, the ISC index  was quantified for the obstacle crossing step for healthy younger and older adults. In Study 2, proactive changes in the ISC index as healthy young adults approached and crossed an obstacle were characterized. In Study 3, the changes in the dynamics of the across-step ISC index due to  an additional visual stepping target in the approach to the obstacle were identified.  I found that there exists a covariance strategy that healthy adults use to navigate the  environment safely and successfully. First, I found that individuals prioritize the environmental  constraint at the expense of the body-centric constraint when the environment poses a larger risk  to balance (the obstacle), or to satisfy a specified constraint (stepping on a visual target). Second,  I found that the shift in prioritization is proactive, i.e., it occurs while approaching an obstacle.  The strategy to shift priorities is influenced by age (Study 1), environmental features (Study 2  and Study 3), and the proximity of two environmental features (Study 3). These studies add to  the current understanding of foot placement control by demonstrating how this well-known and 15 fundamental strategy to maintain balance while walking is systematically influenced by the  environment and task constraints. These findings can be further extended to study proactive and  reactive adaptations during walking in different populations.   </p>

Page generated in 0.0585 seconds