• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 12
  • Tagged with
  • 66
  • 66
  • 66
  • 38
  • 25
  • 25
  • 20
  • 18
  • 18
  • 18
  • 18
  • 18
  • 17
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development of Combustion Indicators for Control of Multi-Fuel Engines Based on New Combustion Concepts

Jiménez, Irina Ayelén 28 February 2022 (has links)
[ES] Debido a las regulaciones en materia de emisiones y CO2 la industria automotriz a desarrollado diferentes tecnologías innovadoras. Estas tecnologías incluyen combustibles alternativos y nuevos modos de combustión, entre otros. De aquí surge la necesidad del desarrollo de nuevos métodos para el control de la combustión en estas condiciones mencionadas. Por este motivo, en este trabajo se han desarrollado diferentes modelos e indicadores orientados al diagnóstico y control de la combustión tanto en condiciones normales como anormales. Para los casos de combustión normal, se ha desarrollado un modelo de combustión, cuyo objetivo es estimar la media de la evolución de la fracción de la masa quemada y la presión dentro del cilindro. Se implementó un observador, basado en la señal de knock, con la finalidad de mejorar la estimación en condiciones transitorias y poder aplicar así el modelo a diferentes tipos de combustibles. También se presenta un modelo de variabilidad cíclica, en el cual, a partir del modelo de combustión, se propaga una distribución en dos de los parámetros de dicho modelo. Ambos modelos han sido aplicados para un motor de encendido provocado y un motor de combustión de encendido por chorro turbulento. En los casos de combustión anormal, se ha incluido un análisis de la resonancia dentro de la cámara de combustión, en donde también se desarrollaron dos modelos capaces de estimar la evolución de la resonancia. Estos modelos, tanto para condiciones normales como anormales, se utilizaron para el diagnóstico de la combustión. Por una parte, para la detección de knock, en donde tres estrategias de detección de knock fueron desarrolladas: dos basadas en el sensor de presión en cámara y una en el sensor de knock. Por otra parte, se realizó una aplicación de un modelo de resonancia para la mejora de la estimación de la masa atrapada a partir de la resonancia. Finalmente, para mostrar el potencial de los modelos de diagnóstico, dos aplicaciones a control se desarrollaron: una para el control de knock a través de la actuación de la chispa, y otra para el control de gases residuales, a través de la actuación de la distribución variable, realizando paralelamente una optimización de la combustión a través de la actuación de la chispa. / [CA] Impulsada per les regulacions en matèria d'emissions i CO2 la indústria automotriu a desenvolupat diferents tecnologies inovadore. Aquestes tecnologies inclouen combustibles alternatius i nous modes de combustió, entre altres. D'ací sorgix la necessitat posar en pràctica nous mètodes per al control de la combustió. En aquest context, el present trevall proposa diferents models i indicadors orientats al diagnòstic i control de la combustió tant en condicions normals com anormals. Per als casos de combustió normal, es proposa un model de combustió, l'objectiu del qual és estimar la mitjana de l'evolució de la fracció de la massa cremada i la pressió dins del cilindre. Es va implementar un observador, basat en la senyal de knock, amb la finalitat de millorar l'estimació en condicions transitòries i poder aplicar així el model a diferents tipus de combustibles. També es presenta un model de variabilitat cíclica, en el qual, a partir del model de combustió, es propaga una distribució en dos dels parametres del dit model. Ambdós models han sigut aplicats a un motor d'encesa provocada i un motor de combustió d'encesa per doll turbulent. Als casos de combustió anormal, s'ha inclos un anàlisi de la ressonància dins de la cambra de combustió, on també es van desenvolupar dos models capaços d'estimar l'evolució de la ressonància. Aquests models, tant per a condicions normals com anormals, s'utilitzen per al diagnòstic de la combustió. Per una part, per a la detecció de knock, on tres estratègies de detecció de knock s'han desenvolupat: dues basades en el sensor de pressió a la cambra de combustió i una altra basada en el sensor de knock. Per altra part, es va realitzar una aplicació d'un model de ressonància per a la millora de l'estimació de la massa atrapada a partir de la ressonància. Finalment, per a mostrar el potencial dels models de diagnòstic, dos aplicacions de control es van desenvolupar: una per al control de knock a través de l'actuació de l'espurna, i una altra per al control de gasos residuals, a través de l'actuació de la distribució variable, realitzant paral·lelament una optimització de la combustió a través de l'actuació de l'espurna. / [EN] The need to satisfy emissions and CO2 regulations is pushing the automotive industry to develop different innovative technologies. These technologies include alternative fuels and new modes of combustion, among others. Therefore, the need for the development of new methods for combustion control in these mentioned conditions arises. For this reason, in this work different models and indicators have been developed aimed at the diagnosis and control of combustion in both normal and abnormal conditions. For normal combustion cases, a combustion model has been developed, the objective of this model is to estimate the mean of evolution of the mass fraction burned and the in-cylinder pressure. An observer had been implemented, based on knock sensor signal, in order to improve the estimation in transient conditions and also to be able to make use of the model with different fuels. A cyclic variability model is also presented, where from the combustion model, a probability distribution is propagated over two of the parameters of such model. Both models had been applied for a spark ignition engine and a turbulent jet ignition combustion engine. For the abnormal combustion cases, an analysis of the resonance within the combustion chamber had been included, where two models capable of estimating the evolution of the resonance were also developed. These models, for both normal and abnormal conditions, were used for the diagnosis of combustion: on the one hand, for knock recognition, where three knock detection strategies were developed: two based on the in-cylinder pressure sensor and one on the knock sensor. On the other hand, an application of a resonance model was carried out in order to improve the estimation of the trapped mass from the resonance excitation. Finally, to show the potential of such models and applications, two control strategies were developed: one for the control of knock through the actuation of the spark advance, and a second for the control of residual gases, through the actuation of the variable valve timing, while optimizing the combustion through the actuation of the spark advance. / El trabajo desarrollado en esta tesis ha sido posible gracias a la financiación de la Generalitat Valenciana y el fondo social europeo a través de la beca 132 GRISO- LIAP/2018/132 y BEFPI/2021/042. / Jiménez, IA. (2022). Development of Combustion Indicators for Control of Multi-Fuel Engines Based on New Combustion Concepts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181561 / TESIS
62

Development of Integrated Models for Thermal Management in Hybrid Vehicles

Dreif Bennany, Amin 12 June 2023 (has links)
[ES] En los últimos años, la industria de la automoción ha hecho un gran esfuerzo para producir sistemas de propulsión más eficientes y menos contaminantes sin menguar su rendimiento. Las nuevas regulaciones impuestas por las autoridades han empujado a la industria hacia la electrificación de los sistemas de propulsión mientras que las tecnologías desarrolladas para el sistema de propulsión convencional, basado en motores de combustión interna alternativos (MCIA), ya no son suficientes. El modelado numérico ha demostrado ser una herramienta indispensable para el diseño, desarrollo y optimización de sistemas de gestión térmica en trenes motrices electrificados, ahorrando costes y reduciendo el tiempo de desarrollo. La gestión térmica en los MCIA siempre ha sido importante para mejorar el consumo, las emisiones y la seguridad. Sin embargo, es todavía más importante en los sistemas de propulsión híbridos, a causa de la complejidad del sistema y al funcionamiento intermitente del MCIA. Además, los trenes motrices electrificados tienen varias fuentes de calor (es decir, MCIA, batería, máquina eléctrica) con diferentes requisitos de funcionamiento térmico. El objetivo principal de este trabajo ha sido desarrollar modelos térmicos para estudiar la mejora de los sistemas de gestión térmica en sistemas de propulsión electrificados (es decir, vehículo híbrido), estudiando y cuantificando la influencia de diferentes estrategias en el rendimiento, la seguridad y la eficiencia de los vehículos. La metodología desarrollada en este trabajo consistió tanto en la realización de experimentos como en el desarrollo de modelos numéricos. De hecho, se llevó a cabo una extensa campaña experimental para validar los diferentes modelos del tren motriz electrificado. Los datos obtenidos de las campañas experimentales sirvieron para calibrar y validar los modelos así como para corroborar los resultados obtenidos por los estudios numéricos. En primer lugar, se estudiaron las diferentes estrategias de gestión térmica de manera independiente para cada componente del tren motriz. Para el MCIA se estudió el uso de nanofluidos, el aislamiento del colector y puertos de escape, así como el cambio de volumen de sus circuitos hidráulicos. De igual forma, se evaluó el impacto de diferentes estrategias para la mejora térmica de las baterías. Además, el modelo de máquina eléctrica se utilizó para desarrollar pruebas experimentales que emulaban el daño térmico producido en ciclos reales de conducción. En segundo lugar, los modelos de tren motriz se integraron utilizando un estándar de co-simulación para evaluar el impacto de un sistema de gestión térmica integrado. Finalmente, se implementó un nuevo control del sistema de gestión de energía para evaluar el impacto de considerar el estado térmico del MCIA al momento de decidir la distribución de potencia del vehículo híbrido. Los resultados han demostrado que el uso de nanofluidos tiene un impacto muy limitado tanto en el MCIA como en el comportamiento térmico de la batería. Además, también mostraron que al reducir el volumen de refrigerante en un 45 %, la reducción en el tiempo de calentamiento del MCIA y el consumo de combustible en comparación con el caso baso fue del 7 % y del 0.4 %, respectivamente. Además, para condiciones de frio (7ºC), el impacto fue todavía mayor, obteniendo una reducción del tiempo de calentamiento y del consumo de combustible del 13 % y del 0.5 % respectivamente. Por otro lado, los resultados concluyeron que durante el calentamiento del MCIA, el sistema integrado de gestión térmica mejoró el consumo de energía en un 1.74 % y un 3 % para condiciones de calor (20ºC) y frío (-20ºC), respectivamente. Esto se debe al hecho que el sistema de gestión térmica integrado permite evitar la caída de temperatura del MCIA cuando el sistema de propulsión está en manera eléctrica pura. / [CA] En els últims anys, la indústria de l'automoció ha fet un gran esforç per a produir sistemes de propulsió més eficients i menys contaminants sense minvar el seu rendiment. Les noves regulacions imposades per les autoritats han espentat a la indústria cap a l'electrificació dels sistemes de propulsió mentre que les tecnologies desenvolupades per al sistema de propulsió convencional, basat en motors de combustió interna alternatius (MCIA), ja no són suficients. El modelatge numèric ha demostrat ser una eina indispensable per al disseny, desenvolupament i optimització de sistemes de gestió tèrmica en trens motrius electrificats, estalviant costos i reduint el temps de desenvolupament. La gestió tèrmica en els MCIA sempre ha sigut important per a millorar el consum, les emissions i la seguretat. No obstant això, és encara més important en els sistemes de propulsió híbrids, a causa de la complexitat del sistema i al funcionament intermitent del MCIA. A més, els trens motrius electrificats tenen diverses fonts de calor (és a dir, MCIA, bateria, màquina elèctrica) amb diferents requisits de funcionament tèrmic. L'objectiu principal d'aquest treball va ser desenvolupar models tèrmics per a estudiar la millora dels sistemes de gestió tèrmica en sistemes de propulsió electrificats (és a dir, vehicle híbrid), estudiant i quantificant la influència de diferents estratègies en el rendiment, la seguretat i l'eficiència dels vehicles. La metodologia desenvolupada en aquest treball va consistir tant en la realització d'experiments com en el desenvolupament de models numèrics. De fet, es va dur a terme una extensa campanya experimental per a validar els diferents models del tren motriu electrificat. Les dades obtingudes de les campanyes experimentals van servir per a calibrar i validar els models així com per a corroborar els resultats obtinguts pels estudis numèrics. En primer lloc, es van estudiar les diferents estratègies de gestió tèrmica de manera independent per a cada component del tren motriu. Per al MCIA es va estudiar l'us de nanofluids, l'aïllament del col·lector i ports d'eixida així com el canvi de volum dels seus circuits hidràulics. D'igual forma, es va avaluar l'impacte de diferents estratègies per a la millora tèrmica de les bateries. A més, el model de màquina elèctrica es va utilitzar per a desenvolupar proves experimentals que emulaven el mal tèrmic produït en cicles reals de conducció. En segon lloc, els models de tren motriu es van integrar utilitzant un estàndard de co-simulació per a avaluar l'impacte d'un sistema de gestió tèrmica integrat. Finalment, es va implementar un nou control del sistema de gestió d'energia per a avaluar l'impacte de considerar l'estat tèrmic del MCIA al moment de decidir la distribució de potència del vehicle híbrid. Els resultats han demostrat que l'us de nanofluids té un impacte molt limitat tant en el MCIA com en el comportament tèrmic de la bateria. A més, també van mostrar que en reduir el volum de refrigerant en un 45 %, la reducció en el temps de calfament del MCIA i el consum de combustible en comparació amb el cas base va ser del 7 % i del 0.4 %, respectivament. A més, per a condicions de fred (-7ºC), l'impacte va ser encara major, obtenint una reducció del temps de calfament i del consum de combustible del 13 % i del 0.5 % respectivament. D'altra banda, els resultats van concloure que durant el calfament del MCIA, el sistema integrat de gestió tèrmica va millorar el consum d'energia en un 1.74 % i un 3 % per a condicions de calor (20ºC) i fred (-20ºC), respectivament. Això es deu al fet que el sistema de gestió tèrmica integrat permet evitar la caiguda de temperatura del MCIA quan el sistema de propulsió està en manera elèctrica pura. / [EN] In recent years, the automotive industry has made a great effort to produce more efficient and less polluting propulsion systems without diminishing their performance. The new regulations imposed by the authorities have pushed the industry towards the electrification of powertrains while, technologies developed for the conventional propulsion system based on alternative internal combustion engines (ICEs), are no longer sufficient. Numerical modeling has proven to be an indispensable tool for the design, development and optimization of thermal management systems in electrified powertrains, saving costs and reducing development time. Thermal management in ICEs has always been important for improving consumption, emissions and safety. However, it is even more important in hybrid powertrains, due to the complexity of the system and the intermittent operation of the ICE. In addition, electrified powertrains have various heat sources (i.e., ICE, battery, Electric machine) with different thermal operating requirements. The main objective of this work was to develop thermal models to study the improvement of thermal management systems in electrified powertrains (i.e., hybrid electric vehicle), shedding light and quantifying the influence of different strategies on performance, safety and efficiency of the vehicles. The methodology developed in this paper consisted both in carrying out experiments and in developing numerical models. In fact, an extensive experimental campaign was carried out to validate the various models of the electrified powertrain. The data obtained from the experimental campaigns served to calibrate and validate the models as well as to corroborate the results obtained by the numerical studies. Firstly, the different thermal management strategies were studied independently for each component of the powertrain. For the ICE, the use of nanofluids, insulation of exhaust manifold and ports as well as the volume change of its hydraulic circuits were studied. Similarly, the impact of different strategies for the thermal improvement of batteries was evaluated. Furthermore, the electric machine model was used for developing experimental tests which emulated the thermal damage produced in real driving cycles. Secondly, the powertrain models were integrated using a co-simulation standard to assess the impact of an integrated thermal management system. Finally, a new control energy management system was implemented to assess the impact of considering the ICE thermal state when deciding the power split of the hybrid vehicle. The results have shown that the use of nanofluids has a very limited impact on both the ICE and the battery's thermal behaviour. In addition, they also showed that by reducing the volume of coolant by 45 %, the reduction in ICE warm up time and fuel consumption compared to the base case were 7 % and 0.4 %, respectively. In addition, for cold conditions (-7ºC), the impact was even greater, obtaining a reduction in warm up time and fuel consumption of 13 % and 0.5 % respectively. On the other hand, the results concluded that during the warming of ICE, the integrated thermal management system improved energy consumption by 1.74 % and 3 % for warm (20ºC) and cold (-20ºC) conditions, respectively. This is because the integrated TMS makes it possible to prevent the ICE temperature drop when the powertrain is in pure electric mode. Finally, significant gains during Worldwide harmonized Light vehicles Test Cycles (WLTC) and Real Driving Emissions (RDE) cycles were observed when the ICE thermal state was chosen when deciding the power distribution. / The author would like to sincerely acknowledge the founding support pro- vided by Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital in the framework of the Ayuda Predoctoral GVA. (ACIF/2020/234). Additionally the author would also acknowledge the support provided by Renault S.A.S. / Dreif Bennany, A. (2023). Development of Integrated Models for Thermal Management in Hybrid Vehicles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194060
63

Analysis of the high pressure EGR dispersion among cylinders in automotive diesel engines

Miguel García, Julián 19 February 2021 (has links)
[ES] Los objetivos son 2: 1- Determinar el efecto de la dispersión de la recirculación de gases de escape de alta presión (HP EGR) en las emisiones de NOx y humos en motores diésel de automoción en operaciones de funcionamiento constantes. La investigación cuantifica las emisiones de NOx y humos en función del nivel de dispersión de EGR de alta presión entre cilindros. 2- Explorar los límites del modelado 1D para predecir el movimiento del flujo de los gases en la compleja situación en la que estos entran en los cilindros desde el colector de admisión. Los experimentos se realizaron en un banco de pruebas con un motor diésel de 1.6 litros. Para detectar la dispersión de EGR de alta presión se instaló un sistema de válvulas en los conductos de admisión de cada cilindro para medir la concentración de CO2, por tanto la tasa de EGR, en cada conducto. Se instaló también un sistema de válvulas en el escape para medir las emisiones de NOx en cada cilindro. Se instaló un sensor de humos en la línea de escape, aguas abajo de la turbina, para medir el efecto de la dispersión de EGR de alta presión en las emisiones de humos además del sensor para medir el resto de las emisiones contaminantes aguas abajo de la turbina. Se han estudiado 9 puntos de funcionamiento diferentes con distintas velocidades y niveles de carga. El mapa motor se ha estudiado en profundidad, desde 1250 hasta 3000 rpm y entre 3 y 20 bar de presión media efectiva (BMEP). La tasa de EGR varía entre 5 y 42%, dependiendo del punto de funcionamiento. La geometría del modelo reproduce la del motor diésel de automoción de 1.6 litros en el que se realizaron los ensayos experimentales. Incluyendo la línea de EGR de alta presión que fue instalada para controlar los niveles de dispersión durante los ensayos experimentales. La metodología centrada en las herramientas experimentales combina aparatos de medida tradicional con un sistema de válvulas específico que ofrecen una información precisa en cuanto a la concentración de especies tanto en el colector de admisión como en el de escape. El estudio se realizó a emisiones de NOx constantes para observar el efecto de la dispersión de EGR en los valores de opacidad. La metodología está centrada en las herramientas de modelado, las condiciones de contorno y toda la información necesaria para poner en marcha el modelo proviene de los resultados de los ensayos experimentales medidos con los diferentes sensores y aparatos mencionados anteriormente. Muchos de ellos necesarios para ajustar el modelo. La parte más importante para estudiar la capacidad de predicción del modelo es el diseño del colector de admisión. Es necesario poner especial atención en la orientación de los conductos, y en la estructura interna y la superficie para tratar de ser muy fiel a la geometría real, ya que ello determina la predicción de la dispersión. Esta aproximación de modelado cuasi tridimensional (3D) es posible gracias a un programa específico que importa la información necesaria desde un archivo CAD al programa de modelado 1D. Respecto a la parte experimental, el estudio concluye que cuando la dispersión de EGR es baja, los niveles de opacidad se reducen en todos los puntos de funcionamiento. Sin embargo, por encima de ciertos niveles de dispersión de EGR, la opacidad crece seriamente con diferentes pendientes según el punto de operación. El estudio permite cuantificar este límite de dispersión de EGR. La dispersión de EGR incrementa el consumo de combustible por encima del 6.9%. Respecto a la parte de modelado, el estudio concluye que cuando la distribución de EGR entre conductos medida experimentalmente es asimétrica y presenta un alto patrón de concavidad o convexidad, el modelo no predice adecuadamente la distribución del EGR. El estudio concluye que, aunque en los ensayos experimentales la tasa de EGR afecta a la dispersión de EGR, el modelo 1D no es tan sensible como para predecir esta influencia cuando la tasa de EGR está por debajo del 10%. / [CA] L'objectiu de l'estudi és doble. Per una banda, determinar l'efecte de la dispersió de la recirculació de gasos d'escapament d'alta pressió (HP EGR per les seues sigles en anglès) en les emissions d'òxids de nitrogen (NOx) i fums en motors dièsel d'automoció en operacions de funcionament constants. La investigació quantifica les emissions de NOx i fums en funció del nivell de dispersió d'EGR d'alta pressió entre cilindres. Per una altra banda, l'objectiu és explorar els límits del modelatge unidimensional (1D) per predir el moviment del flux dels gasos en la complexa situació en què aquests entren als cilindres des del col·lector d'admissió. Els experiments van ser realitzats en un banc de proves amb un motor dièsel de 1.6 litres. Per detectar la dispersió d'EGR d'alta pressió es va instal·lar un sistema de vàlvules en els conductes d'admissió de cada cilindre per mesurar el percentatge de CO2 i per tant la taxa d'EGR. De la mateixa manera es va instal·lar també un sistema de vàlvules d'escapament, cilindre a cilindre, per mesurar les emissions de NOx. A més també es va instal·lar un sensor de fums en la línia d'escapament, aigües avall de la turbina, per mesurar l'efecte de la dispersió d'EGR d'alta pressió en les emissions de fums, així com el sensor de mesura de la resta d'emissions aigües avall de la turbina. S'han estudiat 9 punts de funcionament diferents amb distintes velocitats i nivells de càrrega, per la qual cosa el mapa motor s'ha estudiat en profunditat, des de 1250 fins a 3000 rpm i entre 3 i 20 bar de pressió mitjana efectiva (BMEP per les seues sigles en anglès). La taxa d'EGR varia entre 5 i 42 %, depenent del punt de funcionament. La geometria del model reprodueix la geometria del motor dièsel d'automoció d'1.6 litres en el qual es van realitzar tots els assajos experimentals. La metodologia centrada en les ferramentes experimentals combina aparells de mesura tradicional amb un sistema de vàlvules específic que ofereixen una informació precisa quant a la concentració d'espècies tant al col·lector d'admissió com al d'escapament. L'estudi es va realitzar a emissions de NOx constants per observar l'efecte de la dispersió d'EGR en els valors d'opacitat. Quant a la metodologia centrada en les ferramentes de modelatge, les condicions de contorn i tota la informació necessària per posar en marxa el model prové dels resultats dels assajos experimentals mesurats amb els diferents sensors i aparells mencionats anteriorment, molts d'ells necessaris per ajustar el model. La part més important per estudiar la capacitat de predicció del model és el disseny del col·lector d'admissió. És necessari posar especial atenció a l'orientació dels conductes, i a l'estructura interna i la superfície per tractar de ser molt fidel a la geometria real, ja que determina la predicció de la dispersió. Esta aproximació del model quasi-tridimensional (3D) és possible gràcies a un programa específic que importa la informació necessària des d'un arxiu de disseny assistit per ordinador (CAD) al programa de modelat 1D. Respecte a la part experimental, l'estudi conclou que quan la dispersió d'EGR és baixa, els nivells d'opacitat es redueixen en tots els punts de funcionament. Tanmateix, per damunt de certs nivells de dispersió d'EGR, l'opacitat creix seriosament amb diferents pendents segons el punt d'operació. L'estudi permet quantificar aquest límit de dispersió d'EGR. A més, la dispersió d'EGR podria contribuir a incrementar el consum de combustible per damunt del 6.9%. Respecte a la part de modelatge, l'estudi conclou que quan la distribució d'EGR entre conductes mesurada experimentalment és asimètrica i presenta un alt patró de concavitat o convexitat, el model no prediu adequadament la distribució d'EGR. A més, l'estudi conclou que, tot i que en els assajos experimentals la taxa d'EGR afecta a la dispersió d'EGR, el model 1D no és tan sensible com per predir aquesta influència quan la taxa d’EGR està per baix del 10%. / [EN] The objective of the study is twofold. On the one hand, it is to determine the effect of the high pressure (HP) exhaust gas recirculation (EGR) dispersion in automotive diesel engines on NOx and smoke emissions in steady engine operation. The investigation quantifies the smoke emissions as a function of the dispersion of the HP EGR among cylinders. On the other hand, it is to explore the limits of the one-dimensional (1D) modeling to predict the movement of the flow in a complex situation as the gases get into the cylinders from the intake manifold. The experiments are performed on a test bench with a 1.6 liter automotive diesel engine. In order to track the HP EGR dispersion in the intake pipes, a valves system to measure CO2, hence EGR rate, pipe to pipe was installed. In the same way, a valves device to measure NOx emissions cylinder to cylinder in the exhaust was installed too. Moreover a smoke meter device was installed in the exhaust line, downstream the turbine, to measure the effect of the HP EGR dispersion on smoke emissions. A probe to measure the other raw emissions was installed downstream the turbine, too. Nine different engine running conditions were studied at different speed and load, thus the engine map was widely studied, from 1250 rpm to 3000 rpm and between 3 and 20 bar of BMEP. The EGR rate variates between 5 and 42 % depending on the working operation point. The geometry of the model reproduces the geometry of a 1.6 liter diesel automotive engine where the tests were performed. It includes an HP-EGR line and the device that was installed to perform the experiments to control the dispersion. The methodology focused on experimental tools combining traditional measuring devices with a specific valves system which offers accurate information about species concentration in both the intake and the exhaust manifolds. The study was performed at constant raw NOx emissions to observe the effect of the EGR dispersion in the opacity values. Regarding the methodology focused on modeling tools, the boundary conditions and all the necessary information to run the model comes from experimental results measured with the different sensors and devices mentioned before. Much of them were needed to adjust the model. The most important part of the modeling to study the capacity of the prediction of the EGR dispersion is the layout of the intake manifold. It is necessary put special attention to the orientation of the pipes, and the internal structure and surface trying to mimic the real geometry because it determinates the prediction of the dispersion. This approximation to quasi-three-dimensional (3D) modeling is possible thanks to a specific software that imports the necessary information from a computer-aided design (CAD) file to the 1D modeling software. Concerning the experimental results, the study leads to conclude that when the EGR dispersion is low, the opacity presents reduced values in all operation points. However, above a certain level of EGR dispersion, the opacity increases dramatically with different slopes depending on the engine running condition. This study allows quantifying this EGR dispersion threshold. In addition, the EGR dispersion could contribute to an increase in the engine fuel consumption up to 6.9%. Regarding to the modeling part, the study concludes that when the experimental EGR distribution among pipes is asymmetric and presents high concavity or convexity spatial pattern, the model does not predict properly the EGR distribution. In addition, the study concludes that, although in the experimental tests the EGR rate affects to the EGR dispersion, the 1D model is not too sensitive to predict this influence when the EGR rate is lower than 10%. / The respondent wishes to acknowledge the financial support received by contract FPI 2015 S2 3101 of Programa de Apoyo a la Investigación y Desarrollo (PAID) from Universitat Politècnica de València (UPV). / Miguel García, J. (2021). Analysis of the high pressure EGR dispersion among cylinders in automotive diesel engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161889 / TESIS
64

Development and validation of a virtual engine model for simulating standard testing cycles

Auñón García, Ángel 05 July 2021 (has links)
[ES] Las nuevas regulaciones en materia de emisiones de efecto invernadero y calidad del aire han conducido la evolución tecnológica de los motores de combustión interna durante los últimos años. Las mejoras en el proceso de la combustión, la sobrealimentación, la gestión térmica, los sistemas de post tratamiento y técnicas como la recirculación de gases de escape, han permitido que los motores de combustión interna de hoy en día sean cada vez más limpios. La adopción en Europa del nuevo ciclo de homologación WLTP, que considera un ciclo de conducción más realista que su predecesor el NEDC, así como la necesidad de evaluar las emisiones contaminantes en diferentes escenarios de temperatura ambiente y de altitud, suponen un desafío para los fabricantes a la hora de diseñar y optimizar sus motores. En este contexto, el modelado unidimensional del motor ofrece la posibilidad de desarrollar y probar diferentes soluciones con la suficiente precisión,a la vez que permite agilizar el proceso de diseño del motor y reducir los costes de éste. El objetivo de esta tesis es el de desarrollar un modelo completo de motor virtual que permita simular condiciones transitorias de régimen de giro y grado de carga, así como diferentes condiciones ambientales de presión y temperatura. Con este modelo de motor se pretende predecir las principales variables termo-fluidodinámicas en diferentes puntos del motor y las emisiones contaminantes liberadas en el escape. Por otra parte, el arranque en frío y el funcionamiento a bajas temperaturas están asociados a un mayor consumo, mayores emisiones de hidrocarburos (HC) y monóxido de carbono (CO), así como mayores emisiones de óxidos de nitrógeno (NOx) debido a la desactivación de los sistemas de recirculación de gases de escape. Para paliar estos efectos adversos, una opción es lograr que el sistema de postratamiento alcance su temperatura de activación lo más pronto posible. En este trabajo se aborda este objetivo mediante dos soluciones. Por un lado, se ha explorado la posibilidad de elevar la temperatura de los gases en el escape mediante un sistema de distribución variable. Con este método se pueden reducir las emisiones de CO y HC en torno a un 40-50 % y las emisiones de NOx hasta un 15 % durante la primera fase del ciclo WLTC, a costa de una penalización en el consumo de combustible. Por otro lado, también se ha estudiado la posibilidad de aislar térmicamente el sistema de escape. En este caso, es posible reducir las emisiones de CO y HC en torno a un 30 % sin mejorar las de NOx. / [CA] Les noves regulacions en matèria d'emissions d'efecte d'hivernacle i qualitat de l'aire han conduït la evolució tecnològica dels motors de combustió interna durant els darrers anys. Les millores en el procés de la combustió, la sobrealimentació, la gestió tèrmica, els sistemes de postractament i tècniques com la recirculació de gasos d'escapament, han permès que els motors de combustió interna d'avui dia siguen cada vegada més nets. L'adopció a Europa del nou cicle d'homologació WLTP, que considera un cicle de conducció més realista que el seu predecessor el NEDC, així com la necessitat d'avaluar les emissions de gasos contaminants en diferents escenaris de temperatura ambient i humitat, suposen un repte per als fabricants a l'hora de dissenyar i optimitzar els seus motors. En aquest context, el modelatge unidimensional del motor ofereix la possibilitat de desenvolupar i provar diferents solucions amb la suficient precisió, al mateix temps que agilitza el procés de disseny del motor i reduïx els costos derivats d'aquest. L'objectiu d'aquesta tesi és el de desenvolupar un model complete de motor virtual que permeta simular condicions transitòries de règim de gir i grau de càrrega, així com diferents condicions ambientals de pressió i temperatura. Amb aquest model de motor es pretén predir les principals variables termo-fluidodinàmiques en diferents punts del motor i les emissions contaminants alliberades en l'escapament. Per altra banda, l'arrancada en fred i el funcionament a baixes temperatures están associats a un major consum, majors emissions d'hidrocarburs (HC) i monòxid de carboni (CO), així com majors emissions d'òxids de nitrògen (NOx) degudes a la desactivació dels sistemes de recirculació de gasos d'escapament. Per a pal·liar aquestos efectes indesitjats, una opció és aconseguir que el sistema de postractament arribe a la seua temperatura d'activació el més prompte possible. En aquest treball, aquest objectiu s'aborda mitjançant dues solucions. Per una banda, s'ha investigat la possibilitat d'augmentar la temperatura dels gasos en l'escapament per mitjà d'un sistema de distribució variable. Amb aquest mètode s'ha aconseguit reduïr les emissions de CO i HC al voltant d'un 40-50 % i les emissions de NOx fins a un 15 % durant la primera fase del cicle WLTC, acosta d'una penalització en el consum de combustible. Per altra banda, també s'ha estudiat la possibilitat d'aïllar tèrmicament el sistema d'escapament. En aquest cas, és possible reduir les emissions de CO i HC vora un 30 % sense millorar les de NOx . / [EN] The new regulations regarding greenhouse emissions and air quality have led the technological progress of the internal combustion engines during the recent years. Improvements in the combustion process, turbocharging, thermal management, after-treatment systems and techniques such as the exhaust gases recirculation, have resulted in cleaner internal combustion engines. The adoption of the new type approval test in Europe, so-called WLTP, which represents a more realistic driving cycle than its forerunner the NEDC, as well as the need to evaluate pollutant emissions at different conditions of ambient temperature and altitude, represent a challenge for manufacturers when it comes to design and optimise their engines. In this context, one-dimensional engine models offer the possibility to develop and test different solutions with enough accuracy, while hastening the engine design process and reducing its costs. The main objective of this thesis is to develop a complete virtual engine model able to simulate transient conditions of engine speed and load, as well as different ambient conditions of pressure and temperature. The engine model is used to predict the main thermo-and fluid dynamic variables at different engine locations and the tailpipe pollutant emissions. Furthermore, engine cold start and its operation at low temperature is associated to a greater fuel consumption, hydrocarbon (HC) and carbon monoxide (CO) emissions; as well as more nitrogen oxide (NOx) emissions due to the deactivation of the exhaust gases recirculation systems. A solution to mitigate these negative effects is to heat up the after-treatment system so as to achieve its activation temperature as soon as possible. In the work presented, this goal is addressed through two different standpoints. On the one hand, variable valve timing systems have been studied as a way to increase the exhaust gases temperature. With this option it is possible to reduce CO and HC emissions by 40-50 % and NOx emissions by 15 % during the first stage of the WLTC cycle, at the expense of a penalty in the fuel consumption. On the other hand, the thermal insulation of the exhaust system has also been studied with the same objective. In this case, it is possible to reduce CO and HC emissions by 30 %, while not improving NOx ones. / The author wishes to acknowledge the financial support received through the FPI S2 2018 1048 grant of Programa de Apoyo para la Investigación y Desarrollo (PAID) of Universitat Politècnica de València. / Auñón García, Á. (2021). Development and validation of a virtual engine model for simulating standard testing cycles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168906 / TESIS
65

Computational Study of the Injection Process in Gasoline Direct Injection (GDI) Engines

Martínez García, María 02 September 2022 (has links)
[ES] La creciente preocupación por los problemas medioambientales, la disponibilidad de combustibles fósiles unido a la gran demanda de vehículos, han llevado a los gobiernos a regular las emisiones emitidas a la atmósfera. Existen propuestas de adoptar fuentes de energía renovables. Sin embargo, la sustitución de los combustibles derivados del petróleo no será fácil, rápida o rentable, y el transporte propulsado por motores de combustión interna (ICE) seguirá destacando en los próximos años. La eficiencia de la combustión y el rendimiento del motor están influenciados por el complejo proceso de inyección. La inyección directa de gasolina (GDI) aumenta el ahorro de combustible y cumple los requisitos de emisiones contaminantes, aunque queda potencial por descubrir. Por ello, ha sido objeto de estudio en los últimos años y, en consecuencia, de la presente Tesis. Este trabajo tiene como motivación mejorar el entendimiento en el campo del GDI. La compleja naturaleza transitoria del proceso de inyección hace que el estudio experimental sea un desafío. La Mecánica de Fluidos Computacional (CFD) surge como una potente alternativa a los experimentos y ha sido adoptada para esta investigación. Bajo este contexto, el objetivo de la presente Tesis es desarrollar una metodología predictiva para la caracterización hidráulica del inyector, capaz de ser aplicada a las actuales y futuras generaciones de inyectores GDI, independientemente de las características del inyector y del software de estudio. Una vez validada, el objetivo posterior es utilizar los resultados para analizar el comportamiento del chorro. Este enfoque busca seguir los pasos de la comunidad científica sustituyendo la práctica experimental. La validación de la metodología se lleva a cabo mediante su aplicación en dos inyectores GDI solenoides multi-orificio diferentes. Además, se han utilizado dos códigos CFD comerciales: CONVERGE y StarCCM+. La metodología predictiva se centra en el estudio del flujo interno y el campo cercano para caracterizar hidráulicamente el inyector. El problema a tratar se define como un sistema multifásico en un marco Euleriano y considerando un único fluido. El tratamiento del flujo multifásico se realiza mediante el enfoque Volume-of-Fluid (VOF). Además, se emplea el Homogeneous Relaxation Model (HRM) para considerar el intercambio de masa entre las fases líquida y vapor debido a cavitación y flash boiling. La turbulencia se ha tratado a partir de los enfoques Reynolds-Averaged Navier-Stokes (RANS) y Large Eddy Simulations (LES). Por otro lado, en cuanto al estudio del flujo externo, se ha adoptado el Discrete Droplet Model (DDM). La atomización y el chorro están influenciados por la geometría de la tobera, por lo que la estrategia de acoplamiento del flujo interno y externo complementa los análisis. Se han adoptado enfoques de acoplamiento unidireccional y mapeado, utilizando como parámetros de entrada los datos de flujo interno de la validada metodología. Esta Tesis aporta una nueva y valiosa metodología predictiva con una elevada precisión a la hora de caracterizar el proceso de inyección en comparativa con datos experimentales. Por otro lado, es directamente trasferible a distintos códigos de cálculo así como aplicable a inyectores con características dispares sin perjudicar las exigencias del modelo. La correcta caracterización del flujo interno ha permitido emplear los datos obtenidos para analizar el comportamiento del chorro eliminando la necesidad de usar datos experimentales. Los resultados obtenidos capturan el comportamiento macroscópico del chorro con una precisión comparable a los experimentos. Aunque todavía hay muchos retos que afrontar, la presente Tesis supone un gran avance en el campo del GDI. El remarcable progreso se debe al desarrollo y uso de una metodología totalmente predictiva, que permite prescindir de la mayoría de los experimentos para contribuir a una mayor y más amplia visión de la física del proceso de inyección. / [CA] La creixent preocupació pels problemes ambientals, la limitada disponibilitat de combustibles fòssils, acompanyat a la gran demanda de vehicles, ha portat el govern a regular els nivells d'emissions emesos a l'atmosfera. Existeixen propostes d'adoptar fonts d'energia renovables. Tanmateix, la substitució dels combustibles líquids derivats del petroli no es durà a terme de forma fàcil, ràpida o rentable, i el transport propulsat per motors de combustió interna (ICE) continuarà destacant en els pròxims anys. L'eficiència de la combustió i el rendiment del motor són fortament influenciats pel complex procés d'injecció. La injecció directa de gasolina (GDI) augmenta l'estalvi de combustible i complix amb els requisits d'emissions, encara que queda molt potencial per descobrir. Per això, aquest ha sigut objecte d'investigació en els últims anys i, com a conseqüència, d'aquesta Tesi. Aquest treball té com a motivació millorar l'enteniment en el camp del GDI. La complexa natura transitòria de la injecció fa que l'estudi experimental siga força complex. La Mecànica de Fluids Computacional (CFD) sorgeix com una potent alternativa als experiments, i ha sigut adoptada per aquesta investigació. Baix aquest mateix context, es proposa com a objectiu principal d'aquesta Tesi el desenvolupament d'una metodologia predictiva per a la caracterització hidràulica de l'injector, capaç de ser aplicada a les actuals i futures generacions d'injectors GDI (independentment de les característiques de l'injector i del software d'estudi). Una vegada validada, el posterior objectiu és analitzar el comportament de l'esprai. Aquest enfocament busca seguir els passos de la comunitat científica substituint la pràctica experimental. La validació de la metodologia ha sigut duta a terme mitjançant la seva aplicació en dos injectors GDI solenoides multi-orifici. A més, s'han utilitzat dos software CFD comercials: CONVERGE i StarCCM+. La metodologia predictiva se centra en l'estudi del flux intern i el camp proper per tal de caracteritzar hidràulicament l'injector. El problema a tractar es defineix en base a un sistema multi-fàsic en un marc Eulerià i considerant un únic fluid. El tractament del fluid multi-fàsic es realitza mitjançant l'aproximació Volume-of-Fluid (VOF). A més, s'utilitza el Homogeneous Relaxation Model (HRM) per tal de considerar l'intercambi de massa entre les fases líquida i vapor degut als fenòmens de cavitació i flash boiling. La turbulència s'ha tractac a través dels enfocaments Reynolds-Averaged Navier-Stokes (RANS) i Large Eddy Simulations (LES). Pel que fa a l'estudi del fluix extern, s'ha adoptat el Discrete Droplet Model (DDM). Sent conscients que el comportament l'atomització i l'esprai estan influenciats per la geometria de la tovera, l'estratègia d'acoblament del flux intern i extern complementa les anàlisis. S'han adoptat els enfocaments d'acoblament unidireccional i mapejat, utilitzant com a paràmetres d'entrada les dades del flux intern obtingudes amb la validada metodologia. Aquesta Tesi aporta una nova i valuosa metodologia predictiva amb una elevada precisió a l'hora de caracteritzar el procés d'injecció en comparativa amb dades experimentals. És directament transferible a diversos codis de càlcul així com aplicable a injectors amb característiques dispars sense perjudicar les exigències del model. La correcta caracterització del flux intern ha permès utilitzar les dades obtingudes per tal d'analitzar el comportament de l'esprai, eliminant la necessitat d'emprar dades experimentals. Els resultats obtinguts d'aquest estudi capturen el comportament macroscòpic de l'esprai amb una precisió comparable als experiments. Encara que queden molts reptes per afrontar, aquesta Tesi aporta un important avanç al camp del GDI. La ruptura prové del desenvolupament i ús d'una metodologia completament predictiva, que substitueix els experiments requerits i així contribueix a una millor i més ampla visió de la física del procés d'injecció. / [EN] Concerns about climate change, availability of fuel resources and the high demand for vehicles, have led governments to regulate the level of pollution emitted by engines into the atmosphere. There is a strong desire to adopt renewable and sustainable energy sources. However, the substitution of liquid fuels derived from petroleum will not emerge easily, quickly or economically, and Internal Combustion Engines (ICE) will continue to excel for the next few years. Combustion efficiency and engine performance are strongly influenced by the complex fuel injection process. Gasoline Direct Injection (GDI) strategies increase fuel economy and meet emission requirements, although many challenges remain, which has therefore been one of the main research objectives in recent years and of this Thesis. The present research aims to provide a better understanding in the field of GDI. The transient and complex nature of the injection process makes the experimental study of GDI quite challenging. Therefore, Computational Fluid Dynamics (CFD) emerges as a powerful alternative adopted for this research. In this context, the main objective of the present Thesis is to develop a predictive methodology capable of being applied to current and future generations of GDI injectors, regardless of the injector features and the software employed, for the hydraulic characterization of the injector. Once validated, the subsequent goal is to employ the obtained results to analyze the behavior of the spray downstream of the injector. The approach attempts to follow the footsteps of the research community to avoid experimental practice. The predictive methodology has been validated through its application to two multi-hole solenoid GDI injectors with different features. In addition, the mentioned methodology has been evaluated using diverse commercial software: CONVERGE and StarCCM+. The methodology focuses on the study of the internal and near-field flow to hydraulically characterize the injector. So the problem to be addressed is a multi-phase system, performed in an Eulerian framework, modeled through a single-fluid approach. The multi-phase flow is treated by means of the Volume-of-Fluid (VOF) approach. Homogeneous Relaxation Model (HRM) is employed to consider the mass exchange between liquid and vapor fuel phases, due to cavitation and flash boiling. The turbulence treatment has been performed from both Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES) approaches. Regarding the external flow study, the Discrete Droplet Model (DDM) has been adopted. In addition, being aware that atomization and spray behavior is greatly influenced by the nozzle geometry, the coupling strategy of the internal and external flow complements the analyses. One-way coupling and mapping approaches have been adopted, using as input parameters the internal flow data obtained from the already validated methodology. Accordingly, this Thesis provides a new and valuable predictive methodology, which has demonstrated a high accuracy in characterizing the flow behavior during the injection process through comparison with experimental data. It has also proven to be directly transferable to different CFD software and applicable to injectors with dissimilar characteristics without compromising the requirements of the model. The correct internal flow characterization has made it possible to employ the obtained data to analyze the spray patterns, which eliminates the need to consider experimental data. The outcomes of this study macroscopically capture the jet behavior with an accuracy comparable to experiments under different operating conditions. Although there are still many challenges to face, the present Thesis brings a breakthrough in the field of GDI. The quantum leap arises from the development and use of a fully predictive methodology, allowing to avoid most experiments to contribute to a greater and broader vision of the injection process physics. / María Martínez García has been founded through a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118 and financial support from the European Union. These same institutions, Government of Generalitat Valenciana and the European Union, supported through a grant for pre-doctoral stays out of the Comunitat Valenciana with reference BEFPI/2020/057 the research carried out during the stay at Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, ETH Zurich, Switzerland. Special gratitude from the author to both institutions, Government of Generalitat Valenciana and the European Union, for making this dream possible / Martínez García, M. (2022). Computational Study of the Injection Process in Gasoline Direct Injection (GDI) Engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185180 / TESIS
66

Contribución al modelado unidimensional en motores de dos tiempos de altas prestaciones

Jiménez Macedo, Víctor Daniel 08 July 2013 (has links)
Un modelo de simulación presenta muchas ventajas en el campo del desarrollo de motores de combustión interna alternativos. Su utilidad es doble. Por un lado, para entender la naturaleza de los fenómenos físicos que suceden en el interior del motor, y por otro, con el fin de optimizar el diseño de los sistemas que integran el mismo. El principal objetivo de esta tesis es desarrollar un modelo de un motor de dos tiempos de 125 cc de altas prestaciones para caracterizar la fluidodinámica interna en los sistemas de admisión, cilindro y escape. Para la construcción del modelo unidimensional del motor es imprescindible conocer información experimental. Por tanto, se han caracterizado de forma experimental los elementos que forman el motor. Por una parte, se ha usado un banco de impulsos para la caracterización dinámica. Por otra parte, se ha empleado un banco de flujo para caracterizar las pérdidas de presión en los elementos. Además, en banco motor, se ha analizado el proceso de combustión, con el objetivo de determinar la ley de liberación de calor. En relación a las tareas de modelado, se ha usado un modelo de diagnóstico para caracterizar del proceso de combustión, experimentando 37 condiciones de operación modificando el régimen de giro, el avance del encendido y usando cinco sistemas de escape. Asimismo, con el fin de poder reproducir el fenómeno de propagación de ondas en el interior del sistema de escape se ha propuesto un modelo de transmisión de calor ya que los modelos convencionales usados en motores de 4T no proporcionan resultados precisos al no contemplar los fenómenos físicos que suceden en el proceso de escape espontáneo de un motor de 2T de estas características. Para ello, se ha caracterizado experimentalmente el fenómeno de propagación de ondas en el interior del sistema de escape midiendo con diversos transductores de presión a lo largo de: un escape de diámetro constante y recto, y varios sistemas de escape derivados del original del motor. El primero se usó para proceder al necesario ajuste de las constantes del modelo mientras que los segundos para realizar la validación del mismo. Para el desarrollo del modelo de transmisión de calor se han contemplado las fluctuaciones de la velocidad instantánea del fluido y la disipación de la turbulencia con una longitud de entrada. Una vez es construido el modelo unidimensional del motor con capacidad de reproducir los complejos fenómenos ondulatorios que existen en el interior de los sistemas de admisión, cilindro y escape, es necesario desarrollar correlaciones para los parámetros que definen la función de Wiebe, usada como ley de liberación de calor en el cilindro. Se ha correlacionado la variación de estos parámetros (en particular, la duración de la combustión y el parámetro de forma) con variables de funcionamiento del motor: régimen de giro y avance del encendido, y variables que se calculan en el modelo: fracción de residuales y densidad de la carga. De esta forma se dispone de un modelo predictivo de las prestaciones del motor si se conoce una correlación para las pérdidas mecánicas, que también ha sido obtenida. El uso del modelo de transmisión de calor propuesto en este trabajo reproduce con precisión la fase y amplitud de la presión de escape con valores inferiores al 1% al comparar el coeficiente de admisión medido y modelado. Las diferencias pueden alcanzar el 7% si se emplean otros modelos encontrados en la literatura. Por otra parte, los resultados obtenidos al usar las correlaciones para la combustión se traducen en: diferencias inferiores al 1.5% entre potencia medida y modelada para todas las condiciones de funcionamiento del motor si el proceso de combustión presenta un coeficiente de variación en la presión del cilindro inferior al 2.5%. Cuando el coeficiente de variación aumenta, debido a la dispersión cíclica, las diferencias entre potencia medida y modelada pueden alcanzar el 4%. Palabras clave: Motores de Combustión Interna Alternativos, Motor de Dos Tiempos, Altas Prestaciones, Instalaciones Experimentales y Medición, Modelado Unidimensional, Modelo de Acción de Ondas, Proceso de Combustión, Transmisión de Calor. / Jiménez Macedo, VD. (2013). Contribución al modelado unidimensional en motores de dos tiempos de altas prestaciones [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/30773 / TESIS

Page generated in 0.1358 seconds