• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms by which Staphylococcus aureus induces cytokines and cell death in human keratinocytes and mouse fibroblasts

Alkahtani, Abdullah January 2016 (has links)
Background: Staphylococcus aureus is an important trigger of flares in atopic dermatitis. The exact mechanisms by which S. aureus induces inflammatory responses and cell death in the skin epithelium is unclear. The aim of this thesis was to elucidate the cellular and molecular mechanisms by which S. aureus induces it's pathogenic effects on keratinocyte and fibroblast cell lines. Methods: Human keratinocytes (HEKa), and mouse embryonic fibroblasts (MEF) from the NC/Nga dermatitis prone mouse strain were used to investigate the induction of Th2-promoting cytokines (IL-33 and TSLP) and cell death by S. aureus. Cytokine levels were measured by ELISA and cytotoxicity by flow cytometry. Results: Live, but not killed S. aureus or other staphylococcal species, induced release of Th2-promoting cytokines (IL-33 and TSLP) and necrosis in both human and mouse cell lines. Cytokines were not induced by TLR2 ligands, and anti-TLR2 antibodies did not inhibit release, suggesting that the TLR2 pathway was not involved. By contrast, the release of cytokines was induced by a secreted, heat-labile factor/s and could be blocked by protease and PAR2 inhibitors, suggesting that the protease-PAR2 pathway was critical. NC/Nga mouse fibroblasts that lacked soluble IL-33 (sST2) receptor were more sensitive to the effects of S. aureus than control MEF. Conclusions: S. aureus is unique amongst staphylococcal species in it's ability to induce an inflammatory response and cytotoxicity in human keratinocytes and mouse fibroblasts. The protease-PAR2 pathway is critical to this bioactivity. Development of specific inhibitors of this pathway may provide novel therapies for treating S. aureus -induced eczema flares.
2

Studies on the antiproliferative action of interferon : effects on proteins synthesized in the G1 and S phase of the cell cycle in 2 anchorage-dependent cell lines

Lundblad, Dan January 1991 (has links)
Interferons (IFNs) are a class of structurally related proteins first discovered to be produced by virus-infected cells. By now, several other inducing agents have been described. IFNs exert multiple effects on cells exemplified by the establishment of an antiviral state, inhibition of cell proliferation and alteration of different immune reactions. In the present thesis the inhibition of cellular growth concentrated on effects in the early cell cycle have been studied. The human glioma cell line 251 MG was found to be blocked in the S phase of the cell cycle upon addition of IFN both to exponentially growing and growth-factor depleted, synchronized cells. Thymidine kinase and DNA-polymerase activities were reduced in parallel with the S phase effect. 2-5 oligo Anucleotides transfected into glioma cells lead to inhibition of cell growth, exponentially growing cells being blocked in the S phase as during IFN treatment. In contrast, synchronized, restimulated cells were blocked in the cellcycle phase where they resided at the time of transfection. As 2-5 oligo A synthetase activity was induced in the middle of the Gl phase, these results might indicate that the kinetics of expression of oligonucleotides after IFN additiondetermines the type of cell cycle block obtained in differenttumor cells. IFN inhibited preferentially proteins originating from newly synthesized mRNA in Sw 3T3 cells, c-mvc did not seem to be included among these proteins. In both cell systems c-myc expression was unaltered after IFN treatment. In clone T1 selected from the the Sw 3T3 cell line , c-mvc expression was uncoupled to growth and seemed to be growth factor independent. The change in c-myc expression in clone T1 compared to SW 3T3 cells did not render the cells sensitive to IFN. Hence, c-myc regulation does not seem to be the mechanism by which IFN regulates cell growth in this system. The proliferation marker KI-67 antigen was shown not to be causatively involved in growth inhibition of IFN. The reduced levels of the antigen was proposed to be a secondary effect caused by the G0/G1 arrest. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1991, härtill 6 uppsatser</p> / digitalisering@umu
3

Desenvolvimento in vitro de embriões bovinos usando células-tronco mesenquimais de rato e fibroblastos embrionárias de camundongos

MARTINS, Sávio S. C. 30 March 2015 (has links)
Submitted by biblioteca unifenas (biblioteca@unifenas.br) on 2018-03-05T22:12:22Z No. of bitstreams: 1 Sávio Carneiro Martins Dissertacao.pdf: 1917056 bytes, checksum: 1e6b06de6f8c419963c162ad0230fffa (MD5) / Made available in DSpace on 2018-03-05T22:12:22Z (GMT). No. of bitstreams: 1 Sávio Carneiro Martins Dissertacao.pdf: 1917056 bytes, checksum: 1e6b06de6f8c419963c162ad0230fffa (MD5) Previous issue date: 2015-03-30 / Due to the importance of in vitro embryo production (IVEP) to accelerate genetic improvement is important the search for technological innovation that can enhance the in vitro embryo development. Mouse embryonic fibroblasts (MEFs) have been widely used as a feeder layer to support embryonic stem cells due to their release of growth factors. Mesenchymal stem cells (MSCs) from different sources were also found to release bioactive factors that can support cell growth. This study aims to investigate the effect of co-culture of MSC from rat bone marrow or MEF as a feeder source for in vitro production of bovine embryos. Cumulus oophorus complexes were matured into three groups: control (CTRL), co-culture with monolayer of mesenchymal cells of rats (MSC) or co-cultured with monolayer of embryonic fibroblasts of mice (MEF). Fertilization was performed in control condition for all groups, and in vitro fertilized embryos were cultured from fourth day on in CTRL, co-culture with MSC or co-cultured with MEF, so that the following groups were performed: (CTRL / CTRL) - maturation and embryo development in CTRL conditions; (CTRL / MSC) - maturation in CTRL and embryo development with MSC from the fourth day on after the beginning of the in vitro embryo culture; (CTRL / MEF) - maturation CTRL and embryo development with MEF from the fourth day on after the beginning of the in vitro embryo culture; (MSC / CTRL) - MSC during maturation and embryo development in CTRL; (MSC / MSC) - maturation and embryo development in MSC from the fourth day on after the beginning of the in vitro embryo culture; (MEF / CTRL) - maturation and embryo development in MEF and CTRL (MEF / MEF) - maturation and embryo development in MEF from the fourth day on after the beginning of embryo development in vitro. No significant difference was found among the oocytes matured in CTRL, MSC and MEF conditions for metaphase II and apoptosis rates and for cleavage rate in embryos at 4th day after the beginning of the in vitro culture. The number of cells in the inner cell mass, trophoblast cells, apoptotic cells and total cells were similar (P> 0.05) in the embryos from all experimental groups. The rates of blastocyst formation, expanded, hatched and the total of blastocysts did not differ among experimental groups (P> 0.05) at 7th day of embryo development. At eighth day of embryo culture we observed a difference (P <0.05) in hatched blastocyst rate which was higher in the CTRL /CTRL group when compared to MSC/MSC group, however, the proportion of blastocyst, expanded and total blastocysts was not different (P> 0.05). We conclude that there was no significant improvement in bovine embryo development using co-cultures of MSC from rats or MEF when compared to control culture system. However more studies investigating the use of stem cells from other sources or their conditioned medium are needed to better understand the effect of these cells on embryonic development. / Diante da importância da produção in vitro de embriões (PIVE) na expansão do melhoramento genético, é importante a busca de inovações tecnológicas que possam potencializar o desenvolvimento embrionário in vitro. Fibroblastos embrionários de camundongo (MEFs) têm sido amplamente utilizados como camada alimentadora para suportar as células-tronco embrionárias, devido à sua liberação de fatores de crescimento. As células-tronco mesenquimais (MSCs) identificadas a partir de diferentes fontes, também liberam fatores bioativos que possam suportar o crescimento celular. Este estudo tem como objetivo investigar o efeito da co-cultura de MSC de medula óssea de rato ou MEF como fonte alimentadora na produção in vitro de embriões bovinos. Complexo cumulus oophorus foram maturados em três grupos distintos: Controle (CTRL), co-cultura com monocamada de células mesenquimais de ratos (MSC) ou co-cultura com monocamada de fibroblastos embrionários de camundongos (MEF). A fecundação foi realizada em condição controle para todos os grupos e os embriões fecundados in vitro foram também cultivados a partir do quarto dia em CTRL, co-cultura com MSC ou co-cultura com MEF, formando os seguintes grupos experimentais: (CTRL/CTRL) – maturação e cultivo embrionário em condições CTRL; (CTRL/MSC) – maturação em CTRL e cultivo embrionário em MSC a partir do quarto dia após o início do cultivo embrionário in vitro; (CTRL/MEF) – maturação em CTRL e cultivo embrionário em MEF a partir do quarto dia após o início do cultivo embrionário in vitro; (MSC/CTRL) – maturação em MSC e cultivo embrionário em CTRL; (MSC/MSC) – maturação e cultivo embrionário em MSC a partir do quarto dia após o início do cultivo embrionário in vitro; (MEF/CTRL) – maturação em MEF e cultivo embrionário em CTRL e (MEF/MEF) – maturação e cultivo embrionário em MEF a partir do quarto dia após o início do cultivo embrionário in vitro. Nenhuma diferença significativa foi encontrada entre os oócitos dos grupos CTRL, MSC e MEF, na taxa de estruturas em metáfase II, apoptose e clivagem nos embriões de 4 dias após o início do cultivo in vitro. O número de células da massa celular interna, células do trofoblasto, células em apoptose e células totais foram iguais (P>0,05) entre os embriões dos diferentes grupos experimentais. As taxas de embriões em estágio de blastocisto, blastocisto expandido, blastocisto eclodido e blastocistos totais dos grupos experimentais não se diferiram (P>0,05) no sétimo dia de cultivo embrionário. No oitavo dia de cultivo embrionário houve diferença (P<0,05) da taxa de blastocisto eclodido, sendo maior no grupo CTRL/CTRL quando comparado ao grupo MSC/MSC; no entanto, a proporção de blastocisto, blastocisto expandido e blastocistos totais não foram diferentes (P>0,05) entre os grupos experimentais. Concluímos que não houve melhora significativa no desenvolvimento embrionário bovino utilizando co-culturas com MSC de ratos ou MEF de camundongos, quando comparado com sistema de cultura controle. Entretanto, mais estudos investigando o uso de células-tronco de outras fontes ou seu meio condicionado são necessários para se entender melhor o efeito destas células no desenvolvimento embrionário.
4

Investigations of in vitro test systems for the detection of Glucocorticoid-induced skin atrophy as a tool in drug discovery

Schoepe, Stefanie 12 August 2009 (has links)
Topische Glukokortikoide (GCs) sind wirksam bei Therapie von entzündlichen Hauterkrankungen. Durch ihr Nebenwirkungspotential (z.B. Induktion von Hautatrophie) ist ihr Einsatz jedoch begrenzt. Für die Medikamentenentwicklung ist die Bestimmung des atrophogenen Potenzials neuer Verbindungen daher von großer Bedeutung. Derzeit stehen dafür keine prädiktiven in vitro Modelle zur Verfügung. Ziel dieser Arbeit war daher die Etablierung solcher Modelle. Es wurden kutane Zelltypen (3T3-Zellen, Rattenfibroblasten, HaCaT-Zellen, humane Keratinozyten [NHEK] und Fibroblasten) und Vollhautmodelle (CellSystems AST-2000 und Phenions FTSM) untersucht. Atrophie-Marker, die Proliferation, Kollagen-Metabolismus und Epidermisdicke betreffend, wurden auf mRNA-, Protein- bzw. zellulärer Ebene gemessen. Außerdem wurden mittels Genexpressionsanalysen von GC-behandelter Nagerhaut neue potenzielle Marker identifiziert, deren Regulation in vitro jedoch nicht bestätigt werden konnte. Nach Pilotexperimenten wurden 3 Modelle ausgewählt und für Evaluierungsexperimente mit Referenz-GCs behandelt: 1). MMP1, -2, -3 und -9 mRNA-Expression in NHEK, 2). COL1A1 und COL3A1 mRNA-Expression in 3T3-Zellen, 3.) Epidermisdicke, Kollagen- und MMP-Synthese in FTSM. Die Messparameter der 3 Modelle erwiesen sich als dosisabhängig reguliert und korrelierten mit dem atrophogenen Potenzial der GCs. Schließlich wurde die Prädiktabilität der 3 in vitro Modelle für die in vivo Situation im Nager analysiert. In allen 3 in vitro Systemen induzierte die Behandlung mit einem selektiven GC-Rezeptor-Agonisten weniger atrophogene Effekte als das Referenz-GC. Ähnliche Ergebnisse wurden auch in vivo im Rattenhautatrophie-Modell gefunden. Zusammenfassend wird eine Kaskade von 3 in vitro Modellen empfohlen, um das atrophogene Potential von GC-Rezeptor-Liganden zu bestimmen. Der tatsächliche prädiktive Wert für die klinische Situation sollte in weiteren Studien untersucht werden. / Topical glucocorticoids (GCs) are effective for the therapy of inflammatory skin diseases. However, their use is limited by their side effect potential, with skin atrophy being the most prominent one. Thus, determining the atrophogenic potential of novel compounds is of importance for drug development. Currently, there are no according predictive in vitro models available. The aim of this study was to establish such atrophy models. Rodent and human cutaneous cell types (3T3 cells, rat fibroblasts, HaCaT cells, human keratinocytes [NHEK] and fibroblasts) and human full-thickness skin equivalents (CellSystems AST-2000 and Phenions FTSM) were investigated. Atrophy markers related to proliferation, collagen metabolism and epidermal thickness were measured on mRNA, protein and cellular level, respectively. Additionally, by gene expression profiling of GC-treated rodent skin novel potential markers were identified, but subsequently not confirmed in vitro. After pilot studies 3 models were selected and treated with reference GCs for evaluation experiments: 1.) MMP1, -2, -3 and -9 mRNA expression in NHEK, 2.) COL1A1 and COL3A1 mRNA expression in 3T3 cells, 3.) epidermal thickness, collagen and MMP synthesis in FTSM. The read out parameters of all 3 test systems turned out to be regulated dose-dependently and correlated with the atrophogenic potential of the GCs. Finally, the predictability of the 3 recommended in vitro test system for the rodent in vivo situation was analyzed. In all 3 in vitro test systems, the treatment with a novel selective GC receptor agonist induced less atrophogenic effects than the reference GC clobetasol. Indeed, similar results were found in the hr/hr rat skin atrophy model. In summary, a cascade of 3 in vitro models is recommended to be applied for the characterization of the atrophogenicity of GC receptor ligands. Further experiments are necessary to eventually demonstrate the true predictability of these models for the clinical situation.

Page generated in 0.049 seconds