• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motion planning for digital actors / Planification de mouvements pour acteurs digitaux

Campana, Mylène 07 July 2017 (has links)
Les algorithmes probabilistes offrent de puissantes possibilités quant à la résolution de problèmes de planification de mouvements pour des robots complexes dans des environnements quelconques. Cependant, la qualité des chemins solutions obtenus est discutable. Cette thèse propose un outil pour optimiser ces chemins et en améliorer la qualité. La méthode se base sur l'optimisation numérique contrainte et la détection de collision pour réduire la longueur du chemin tout en évitant les collisions. La modularité des méthodes probabilistes nous a aussi inspirés pour réaliser un algorithme de génération de sauts pour des personnages. Cet algorithme est décrit par trois étapes de planifications, de la trajectoire du centre du personnage jusqu'à son mouvement corps-complet. Chaque étape bénéficie de la rigueur de la planification pour éviter les collisions et pour contraindre le chemin. Nous avons proposé des contraintes inspirées de la physique pour améliorer la plausibilité des mouvements, telles que du non-glissement, de la limitation de vitesse et du maintien de contacts. Les travaux de cette thèse ont été intégrés dans le logiciel "Humanoid Path Planner" et les rendus visuels effectués avec Blender. / Probabilistic algorithms offer powerful possibilities as for solving motion planning problems for complex robots in arbitrary environments. However, the quality of obtained solution paths is questionable. This thesis presents a tool to optimize these paths and improve their quality. The method is based on constrained numerical optimization and on collision checking to reduce the path length while avoiding collisions. The modularity of probabilistic methods also inspired us to design a motion generation algorithm for jumping characters. This algorithm is described by three steps of motion planning, from the trajectory of the character's center to the wholebody motion. Each step benefits from the rigor of motion planning to avoid collisions and to constraint the path. We proposed physics-inspired constraints to increase the plausibility of motions, such as slipping avoidance, velocity limitation and contact maintaining. The thesis works have been implemented in the software `Humanoid Path Planner' and the graphical renderings have been done with Blender.

Page generated in 0.1773 seconds