Spelling suggestions: "subject:"coving boundary"" "subject:"coving foundary""
21 |
Conforming to interface structured adaptive mesh refinement technique for modeling moving boundary problemsChen, Yuhao 01 September 2017 (has links)
No description available.
|
22 |
Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and ComputingPiqueras García, Miguel Ángel 10 September 2018 (has links)
Multitud de problemas en ciencia e ingeniería se plantean como ecuaciones en derivadas parciales (EDPs). Si la frontera del recinto donde esas ecuaciones han de satisfacerse se desconoce a priori, se habla de "Problemas de frontera libre", propios de sistemas estacionarios no dependientes del tiempo, o bien de "Problemas de frontera móvil", asociados a problemas de evolución temporal, donde la frontera cambia con el tiempo. La solución a dichos problemas viene dada por la expresión de la(s) variable(s) dependiente(s) de la(s) EDP(s) junto con la función que determina la posición de la frontera. Dado que este tipo de problemas carece en la mayoría de los casos de solución analítica conocida, se hace preciso recurrir a métodos numéricos que permitan obtener una solución lo suficientemente aproximada, y que además mantenga propiedades cualitativas de la solución del modelo continuo de EDP(s).
En este trabajo se ha abordado el estudio numérico de algunos problemas de frontera móvil provenientes de diversas disciplinas. La metodología aplicada consta de dos pasos sucesivos: aplicación de la transformación de Landau o "Front-fixing transformation" al modelo en EDP(s) con el fin de mantener inmóvil la frontera del dominio, y posterior discretización a través de un esquema en diferencias finitas. De ahí se obtienen esquemas numéricos que se implementan por medio de la herramienta MATLAB. Mediante un exhaustivo análisis numérico, se estudian propiedades del esquema y de la solución numérica (positividad, estabilidad, consistencia, monotonía, etc.).
En el primer capítulo de este trabajo se revisa el estado del arte del campo objeto de estudio, se justifica la necesidad de disponer de métodos numéricos adaptados a este tipo de problemas y se describe brevemente la metodología empleada en nuestro enfoque.
El Capítulo 2 se dedica a un problema perteneciente a la Biología Matemática y que consiste en determinar la evolución de la población de una especie invasora que se propaga en un hábitat. Este modelo consiste en una ecuación de difusión-reacción unida a una condición tipo Stefan. Los resultados del análisis numérico confirman la existencia de una dicotomía propagación-extinción en la evolución a largo plazo de la densidad de población de la especie invasora. En particular, se ha podido precisar el valor del coeficiente de la condición de Stefan que separa el comportamiento de propagación del de extinción.
Los Capítulos 3 y 4 se centran en un problema de Química del Hormigón con interés en Ingeniería Civil: el proceso de carbonatación del hormigón, fenómeno evolutivo que lleva consigo la degradación progresiva de la estructura afectada y finalmente su ruina, si no se toman medidas preventivas. En el Capítulo 3 se considera un sistema de dos EDPs de tipo parabólico con dos incógnitas. Para su resolución, hay que considerar además las condiciones iniciales, las de contorno y las de tipo Stefan en la frontera. Los resultados numéricos confirman la tendencia de la ley de evolución de la frontera móvil hacia una función del tipo "raíz cuadrada del tiempo". En el Capítulo 4 se considera un modelo más general que el anterior, en el que intervienen seis especies químicas que se encuentran tanto en la zona carbonatada como en la no carbonatada.
En el Capítulo 5 se aborda un problema de transmisión de calor que aparece en diversos procesos industriales; en este caso, en el enfriamiento durante la colada de metal fundido, donde la fase sólida avanza y la líquida se va extinguiendo. La frontera móvil (frente de solidificación) separa ambas fases, siendo su posición en cada instante la variable a determinar, junto con las temperaturas en cada fase. Después de la adecuada transformación y discretización, se implementa un esquema en diferencias finitas, subdividiendo el proceso en tres estadios temporales, a fin de tratar las singularidades asociadas a posicione / Many problems in science and engineering are formulated as partial differential equations (PDEs). If the boundary of the domain where these equations are to be solved is not known a priori, we face "Free-boundary problems", which are characteristic of non-time dependent stationary systems; besides, we have "Moving-boundary problems" in temporal evolution processes, where the border changes over time. The solution to these problems is given by the expression of the dependent variable(s) of PDE(s), together with the function that determines the position of the boundary. Since the analytical solution of this type of problems is lacked in most cases, it is necessary to resort to numerical methods that allow an accurate enough solution to be obtained, and which also maintain the qualitative properties of the solution(s) of the continuous model.
This work approaches the numerical study of some moving-boundary problems that arise in different disciplines. The applied methodology consists of two successive steps: firstly, the so-called Landau transformation, or "Front-fixing transformation", which is used in the PDE(s) model to maintain the boundary of the domain immobile; later, we proceed to its discretization with a finite difference scheme. Different numerical schemes are obtained and implemented through the MATLAB computational tool. Properties of the scheme and the numerical solution (positivity, stability, consistency, monotonicity, etc.) are studied by an exhaustive numerical analysis.
The first chapter of this work reports the state of the art of the field under study, justifies the need to adapt numerical methods to this type of problem, and briefly describes the methodology used in our approach.
Chapter 2 presents a problem in Mathematical Biology that consists in determining over time the evolution of an invasive species population that spreads in a habitat. This problem is modelled by a diffusion-reaction equation linked to a Stefan-type condition. The results of the numerical analysis confirm the existence of a spreading-vanishing dichotomy in the long-term evolution of the population density of the invasive species. In particular, it is possible to determine the value of the coefficient of the Stefan condition that separates the propagation behaviour from extinction.
Chapters 3 and 4 focus on a problem of Concrete Chemistry with an interest in Civil Engineering: the carbonation of concrete, an evolutionary phenomenon that leads to the progressive degradation of the affected structure and its eventual ruin if preventive measures are not taken. Chapter 3 considers a system of two parabolic type PDEs with two unknowns. For its resolution, the initial and boundary conditions have to be considered together with the Stefan conditions on the carbonation front. The numerical analysis results agree with those obtained in a previous theoretical study. The dynamics of the concentrations and the moving boundary confirm the long-term behaviour of the evolution law for the moving boundary as a "square root of time". Chapter 4 considers a more general model than the previous one, which includes six chemical species, defined in both the carbonated and non-carbonated zones, whose concentrations have to be found.
Chapter 5 addresses a heat transfer problem that appears in various industrial processes; in this case, the solidification of metals in casting processes, where the solid phase advances and liquid reduces until it is depleted. The moving boundary (the solidification front) separates both phases. Its position in each instant is the variable to be determined together with the temperature profiles in both phases. After suitable transformation, discretization is carried out to obtain a finite difference scheme to be implemented. The process was subdivided into three temporal stages to deal with the singularities associated with the moving boundary position in the initialisation and depletion stages. / Multitud de problemes en ciència i enginyeria es plantegen com a equacions en derivades parcials (EDPs). Si la frontera del recinte on eixes equacions han de satisfer-se es desconeix a priori, es parla de "Problemas de frontera lliure", propis de sistemes estacionaris no dependents del temps, o bé de "Problemas de frontera mòbil", associats a problemes d'evolució temporal, on la frontera canvia amb el temps. Atés que este tipus de problemes manca en la majoria dels casos de solució analítica coneguda, es fa precís recórrer a mètodes numèrics que permeten obtindre una solució prou aproximada a l'exacta, i que a més mantinga propietats qualitatives de la solució del model continu d'EDP(s).
En aquest treball s'ha abordat l'estudi numèric d'alguns problemes de frontera mòbil provinents de diverses disciplines. La metodologia aplicada consta de dos passos successius: en primer lloc, s'aplica l'anomenada transformació de Landau o "Front-fixing transformation" al model en EDP(s) a fi de mantindre immòbil la frontera del domini; posteriorment, es procedix a la seva discretització a través d'un esquema en diferències finites. D'ací s'obtenen esquemes numèrics que s'implementen per mitjà de la ferramenta informàtica MATLAB. Per mitjà d'una exhaustiva anàlisi numèrica, s'estudien propietats de l'esquema i de la solució numèrica (positivitat, estabilitat, consistència, monotonia, etc.).
En el primer capítol d'aquest treball es revisa l'estat de l'art del camp objecte d'estudi, es justifica la necessitat de disposar de mètodes numèrics adaptats a aquest tipus de problemes i es descriu breument la metodologia emprada en el nostre enfocament.
El Capítol 2 es dedica a un problema pertanyent a la Biologia Matemàtica i que consistix a determinar l'evolució en el temps de la distribució de la població d'una espècie invasora que es propaga en un hàbitat. Este model consistix en una equació de difusió-reacció unida a una condició tipus Stefan, que relaciona les funcions solució i frontera mòbil a determinar. Els resultats de l'anàlisi numèrica confirmen l'existència d'una dicotomia propagació-extinció en l'evolució a llarg termini de la densitat de població de l'espècie invasora. En particular, s'ha pogut precisar el valor del coeficient de la condició de Stefan que separa el comportament de propagació del d'extinció.
Els Capítols 3 i 4 se centren en un problema de Química del Formigó amb interés en Enginyeria Civil: el procés de carbonatació del formigó, fenomen evolutiu que comporta la degradació progressiva de l'estructura afectada i finalment la seua ruïna, si no es prenen mesures preventives. En el Capítol 3 es considera un sistema de dos EDPs de tipus parabòlic amb dos incògnites. Per a la seua resolució, cal considerar a més, les condicions inicials, les de contorn i les de tipus Stefan en la frontera. Els resultats de l'anàlisi numèrica s'ajusten als obtinguts en un estudi teòric previ. S'han dut a terme experiments numèrics, comprovant la tendència de la llei d'evolució de la frontera mòbil cap a una funció del tipus "arrel quadrada del temps". En el Capítol 4 es considera un model més general, en el que intervenen sis espècies químiques les concentracions de les quals cal trobar, i que es troben tant en la zona carbonatada com en la no carbonatada.
En el Capítol 5 s'aborda un problema de transmissió de calor que apareix en diversos processos industrials; en aquest cas, en el refredament durant la bugada de metall fos, on la fase sòlida avança i la líquida es va extingint. La frontera mòbil (front de solidificació) separa ambdues fases, sent la seua posició en cada instant la variable a determinar, junt amb les temperatures en cada una de les dos fases. Després de l'adequada transformació i discretització, s'implementa un esquema en diferències finites, subdividint el procés en tres estadis temporals, per tal de tractar les singularitats asso / Piqueras García, MÁ. (2018). Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107948
|
23 |
ALE有限要素法による移動境界を含む気液二相流の数値解析 (非圧縮性二流体モデルを用いた解法)内山, 知実, UCHIYAMA, Tomomi, 峯村, 吉泰, MINEMURA, Kiyoshi 07 1900 (has links)
No description available.
|
24 |
Solução da equação de condução de calor na presença de uma mudança de fase em uma cavidade cilíndrica / Heat conduction equation solution in the presence of a change of state in a bounded axisymmetric cylindrical domainDanillo Silva de Oliveira 30 November 2011 (has links)
O problema da condução de calor, envolvendo mudança de fase, foi resolvido para o caso de uma cavidade limitada por duas superfícies cilíndricas indefinidamente longas. As condições de contorno impostas consistem em manter a temperatura da superfície interna fixa e abaixo da temperatura de fusão do material que preenche a cavidade, enquanto que a temperatura da superfície externa é mantida fixa e acima da temperatura de fusão. Como condição inicial se fixou a temperatura de todo o material que preenche a cavidade no valor da temperatura da superfície externa. A solução obtida consiste em duas soluções da equação de condução de calor, uma escrita para o material solidificado e outra escrita para o material em estado líquido. As duas soluções são formalmente escritas em termos da posição da frente de mudança de fase, que é representada por uma superfície cilíndrica com raio em expansão dentro da cavidade. A posição dessa superfície é, a princípio, desconhecida e é calculada impondo o balanço de energia através da frente da mudança de fase. O balanço de energia é expresso por uma equação diferencial de primeira ordem, cuja solução numérica fornece a posição da frente como função do tempo. A substituição da posição da frente de mudança de fase em um instante particular, nas soluções da equação de condução de calor, fornece a temperatura nas duas fases naquele instante. A solução obtida é ilustrada através de exemplos numéricos. / The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in non-dimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples.
|
25 |
Solução da equação de condução de calor na presença de uma mudança de fase em uma cavidade cilíndrica / Heat conduction equation solution in the presence of a change of state in a bounded axisymmetric cylindrical domainOliveira, Danillo Silva de 30 November 2011 (has links)
O problema da condução de calor, envolvendo mudança de fase, foi resolvido para o caso de uma cavidade limitada por duas superfícies cilíndricas indefinidamente longas. As condições de contorno impostas consistem em manter a temperatura da superfície interna fixa e abaixo da temperatura de fusão do material que preenche a cavidade, enquanto que a temperatura da superfície externa é mantida fixa e acima da temperatura de fusão. Como condição inicial se fixou a temperatura de todo o material que preenche a cavidade no valor da temperatura da superfície externa. A solução obtida consiste em duas soluções da equação de condução de calor, uma escrita para o material solidificado e outra escrita para o material em estado líquido. As duas soluções são formalmente escritas em termos da posição da frente de mudança de fase, que é representada por uma superfície cilíndrica com raio em expansão dentro da cavidade. A posição dessa superfície é, a princípio, desconhecida e é calculada impondo o balanço de energia através da frente da mudança de fase. O balanço de energia é expresso por uma equação diferencial de primeira ordem, cuja solução numérica fornece a posição da frente como função do tempo. A substituição da posição da frente de mudança de fase em um instante particular, nas soluções da equação de condução de calor, fornece a temperatura nas duas fases naquele instante. A solução obtida é ilustrada através de exemplos numéricos. / The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in non-dimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples.
|
26 |
Development of a Combined Thermal Management and Power Generation System using a Multi-Mode Rankine CyclePayne, Nathaniel M. 07 June 2021 (has links)
No description available.
|
27 |
A moving boundary problem for capturing the penetration of diffusant concentration into rubbers : Modeling, simulation and analysisNepal, Surendra January 2022 (has links)
We propose a moving-boundary scenario to model the penetration of diffusants into rubbers. Immobilizing the moving boundary by using the well-known Landau transformation transforms the original governing equations into new equations posed in a fixed domain. We solve the transformed equations by the finite element method and investigate the parameter space by exploring the eventual effects of the choice of parameters on the overall diffusants penetration process. Numerical simulation results show that the computed penetration depths of the diffusant concentration are within the range of experimental measurements. We discuss numerical estimations of the expected large-time behavior of the penetration fronts. To have trust in the obtained simulation results, we perform the numerical analysis for our setting. Initially, we study semi-discrete finite element approximations of the corresponding weak solutions. We prove both a priori and a posteriori error estimates for the mass concentration of the diffusants, and respectively, for the a priori unknown position of the moving boundary. Finally, we present a fully discrete scheme for the numerical approximation of model equations. Our scheme is based on the Galerkin finite element method for the space discretization combined with the backward Euler method for time discretization. In addition to proving the existence and uniqueness of a solution to the fully discrete problem, we also derive a priori error estimates for the mass concentration of the diffusants, and respectively, for the position of the moving boundary that fit to our implementation in Python. Our numerical illustrations verify the obtained theoretical order of convergence in physical parameter regimes.
|
28 |
Dynamic Modeling of Heat Power System : Modeling of a Heat Power System Using Physical and Data-driven Methods and Investigation of a Moving Boundary Method / Dynamisk Modellering av Värmekraftsystem : Dynamisk modellering av värmekraftsystem genom att använda fysikalisk modellering samt data-baserade metoder och en undersökning av en Moving-boundary metodGustafsson, Albin January 2023 (has links)
Our society is becoming more and more electrified every day. However, a significant portion of the world’s electricity generation relies on the combustion of fossil fuels to produce heat, which is subsequently harnessed to generate electricity. One way of generating electricity from heat is by utilizing a Rankine cycle. The basis of a Rankine cycle is to heat a liquid to its boiling point, which causes an increase in pressure that is used to spin a turbine and a generator. Many industries, such as transportation and manufacturing, produce large amounts of waste heat that needs to be removed from the main process. A Rankine cycle variant called an organic Rankine cycle can be used in a heat power system to generate electricity from lower-temperature waste heat, which increases efficiency since less heat is wasted. This thesis focuses on constructing a dynamic model of Climeon’s heat power system called HP300. The HP300 utilizes an organic Rankine cycle to generate electricity. Dynamic modeling is valuable because it provides a deeper understanding of the system, which is beneficial for its development and improvement. Moreover, a system model has the potential to enhance the system’s performance by using advanced control methods. The HP300 consists of four main components: a pump, a turbine, an evaporator, and a condenser. Each component will be modeled individually, and the complete model will be constructed by combining the component models. Additionally, an in-depth investigation of an advanced modeling method for heat exchangers is to be conducted. The constructed model in this thesis has an average error of 4%. The pump and turbine were modeled as steady-state models, and the evaporator and condenser were modeled with data-driven state-space models. The most important output of the model is the power generated by the turbine. The power was modeled with an average error of 6%. The turbine model performs best for pressure ratios of 1.75 and above. The model for the condenser had larger errors than the evaporator since it had fewer input variables. Improving the model of the condenser would decrease the overall errors of the model. / Vårt samhälle blir mer och mer elektrifierat för varje dag som går. En betydande del av världens elproduktion är dock beroende av förbränning av fossila bränslen för att producera värme, som sedan utnyttjas för att generera el. Ett sätt att generera el från värme är att använda en Rankine-cykel. Grundprincipen för en Rankine-cykel är att värma upp en vätska till dess kokpunkt, vilket orsakar en tryckökning som används för att snurra en turbin, kopplad till en generator. Många industrier, som exempelvis transport och tillverkning, producerar stora mängder restvärme som måste avlägsnas från huvudprocessen. En variant av Rankine-cykeln som kallas organisk Rankinecykel kan användas i ett värmekraftsystem för att generera elektricitet från restvärme med lägre temperatur, vilket ökar effektiviteten eftersom mindre värme går förlorad. Detta examensarbete fokuserar på att konstruera en dynamisk modell av Climeons värmekraftsystem vid namn HP300. HP300 använder en organisk Rankine-cykel för att generera elektricitet. Dynamisk modellering är värdefull eftersom den ger en djupare förståelse av systemet, vilket är fördelaktigt för dess utveckling och förbättring. Dessutom har en systemmodell potentialen att förbättra systemets prestanda genom att använda avancerade reglermetoder. HP300 består av fyra huvudkomponenter: en pump, en turbin, en förångare och en kondensor. Varje komponent modelleras individuellt och hela modellen konstrueras genom att komponentmodellerna kombineras. Dessutom utförs en fördjupad undersökning av en avancerad modelleringsmetod av värmeväxlare. Den konstruerade modelled i detta arbete har ett genomsnittligt fel på 4%. Pumpen och turbinen modellerades som stationära modeller, medan förångaren och kondensorn modellerades med datadrivna state-space-modeller. Modellens viktigaste variabel är den effekt som genereras av turbinen. Den modellerade effekten hade ett genomsnittligt fel på 6%. Turbinmodellen presterar bäst för tryck-kvoter på 1, 75 och högre. Kondensor modellen hade större fel än förångaren eftersom den hade färre ingångsvariabler. En förbättring av kondensorns modell skulle förbättra modellens övergripande noggrannhet.
|
29 |
Κίνηση, παραμόρφωση και αλληλεπίδραση φυσαλίδων λόγω βαρύτητας ή/και μεταβολής της πίεσης του περιβάλλοντος ρευστού / Motion, deformation and interaction of bubbles due to gravity or/and variation of the pressure of the ambient fluidΧατζηνταή, Νικολέτα 28 April 2009 (has links)
Αντικείμενο της παρούσας εργασίας είναι η πρόβλεψη τόσο της κίνησης, αλληλεπίδρασης και παραμόρφωσης δύο φυσαλίδων λόγω μεταβολής της πίεσης στο περιβάλλον ιξώδες υγρό, όσο και της ανοδικής κίνησης μιας φυσαλίδας λόγω άνωσης σε ένα Νευτωνικό ή ιξωδοπλαστικό ρευστό. Για τη μοντελοποίηση των αλληλεπιδρώντων φυσαλίδων, αναπτύχθηκε μιας νέα ελλειπτική μεθόδος κατασκευής του υπολογιστικού πλέγματος προκειμένου να αντιμετωπιστούν επιτυχώς τα ιδιάζοντα σημεία (πόλοι) των φυσαλίδων και οι μεγάλες παραμορφώσεις των διεπιφανειών τους. Με τη μέθοδο αυτή η πύκνωση του πλέγματος περιορίζεται μόνο στις περιοχές που είναι αναγκαίο, μειώνοντας έτσι το υπολογιστικό κόστος και αυξάνοντας την ακρίβεια των υπολογισμών. Για την επίλυση των παρακάτω προβλημάτων χρησιμοποιήθηκε η μέθοδος των μικτών πεπερασμένων στοιχείων κατά Galerkin. Στην περίπτωση των αλληλεπιδρώντων φυσαλίδων έχει εξετασθεί η επίδραση του σχετικού μεγέθους τους, της συχνότητας και του εύρους μεταβολής της επιβαλλόμενης πίεσης και πότε οδηγούν σε έλξη ή άπωση των φυσαλίδων. Στην περίπτωση ελκτικής δύναμης, ακολουθείται η κίνηση και η παραμόρφωσή τους μέχρι του σημείου που έρχονται σε επαφή, όπου αυτό είναι εφικτό. Για τη μελέτη του προβλήματος της φυσαλίδας που ανέρχεται λόγω άνωσης, υποθέτουμε αξονική συμμετρία και μόνιμη κατάσταση. Σύγκριση των προβλέψεών μας για το σχήμα των φυσαλίδων και το πεδίο ροής γύρω τους με προηγούμενα θεωρητικά και πειραματικά αποτελέσματα για Νευτωνικά ρευστά έδειξε άριστη συμφωνία. Στην περίπτωση του ιξωδοπλαστικού ρευστού εξετάστηκαν λεπτομερώς οι παραμορφώσεις των φυσαλίδων σαν συνάρτηση των αριθμών Bingham, Bond και Αρχιμήδη και υπολογίσθηκαν οι συνθήκες υπό τις οποίες είναι δυνατή η παγίδευση της φυσαλίδας μέσα σε αυτό. / The present study deals with the numerical simulation of the motion, interaction and deformation of two bubbles due to variation of the pressure of the ambient Newtonian fluid, and the buoyancy-driven rise of a bubble in a Newtonian or a viscoplastic fluid. A new elliptic mesh generation method is developed in order to deal with the singular points (poles) of the bubbles and the large deformations of their surface. This method permits us to increase the mesh resolution only in the regions that is necessary, decreasing thus the computational cost and increasing the precision of our calculations. The following problems are solved using the mixed finite element/Galerkin method. In the case of the interacting bubbles the effect of their relative size, the frequency and the width of the imposed pressure is examined as well as the conditions that lead in attraction or repulsion of the bubbles. In the case that attractive forces exist, the motion and the deformation of the bubbles followed up to the point that they come in contact, whenever this is possible. In order to study the problem of the bubble that rises due to buoyancy, axial symmetry and steady flow is assumed. Our results for the shape of the bubbles and the flow around them are in very good agreement with previous theoretical and experimental results for Newtonian fluids. The deformations of the bubbles rising in a viscoplastic material are also examined for various values of the Bingham, Bond and Archimedes numbers and the conditions under which entrapment of a bubble is possible are determined.
|
30 |
Dynamic Modeling and Optimization of Cryogenic Air Separations Units: Design and Operation Strategies / Dynamic Modeling and Optimization of Cryogenic Air Separations UnitsCao, Yanan January 2016 (has links)
Support for this work from Praxair; the McMaster Advanced Control Consortium; and the Natural Sciences and Engineering Research Council of Canada (NSERC), Grant CRDPJ 445717, is gratefully acknowledged. / In the air separation industry, cryogenic distillation is the dominant technology for separating
large quantities of air into individual high purity component products. Due to the complexity
of the process, in addition to significant energy input, air separation units (ASUs) also have
high degrees of material and thermal integration and low process agility. As markets become
more competitive and dynamic, especially after electricity market deregulation, ASUs can
no longer practice mostly stationary operations, and are in need for design and control
strategies to achieve high adaptability. In this study, we address such issues through a
dynamic optimization framework. The use of rigorous dynamic models is important for
developing economically beneficial designs and operating practices.
The first part of this study focuses on the modeling aspect. For the column section of
the plant, a full-order stage-wise model and a collocation based reduced order model are
proposed. Model size, simulation time and predication accuracy are compared. For the
primary heat exchanger, a novel moving boundary model is derived to handle the phase
change in such a multi-stream heat exchanger. Simulation results demonstrate the capability
of the proposed model in tracking the boundary points of the phase change occurrence, as
well as the potential pinch point, along the length of the heat exchanger.
The second part of the study addresses the operation aspects of ASUs through conducting
dynamic optimization studies with collocation based dynamic models. We first performed a
comprehensive analysis for a storage-then-utilization strategy on a nitrogen plant, following a
two-tier multi-period formulation. As the parameter varies with time, the plant collects liquid,
either directly from liquid product or by liquefaction of overproduced gas product, and then
redistributes it for meeting gas product demand or as additional reflux. Effects of electricity
price and demand profiles, additional operation costs, as well as product specifications are
explored. Then we investigated the economic incentive for employing preemptive actions
on a super-staged argon system, which allows the plant to take actions before external changes arrive. In the evaluation, changes are in the gas oxygen product demand. During
the preemptive period, the plant takes either a single set or multiple sets of control actions.
In the demand increase case, operation degrees of freedom are introduced to or removed
from the set of decision variables. The demand decrease scenarios are explored with an
under-supplied or saturated liquid oxygen market. / Dissertation / Doctor of Philosophy (PhD)
|
Page generated in 0.0452 seconds