Spelling suggestions: "subject:"multi instance 1earning"" "subject:"multi instance c1earning""
1 |
Statistical Learning in Multiple Instance ProblemsXu, Xin January 2003 (has links)
Multiple instance (MI) learning is a relatively new topic in machine learning. It is concerned with supervised learning but differs from normal supervised learning in two points: (1) it has multiple instances in an example (and there is only one instance in an example in standard supervised learning), and (2) only one class label is observable for all the instances in an example (whereas each instance has its own class label in normal supervised learning). In MI learning there is a common assumption regarding the relationship between the class label of an example and the ``unobservable'' class labels of the instances inside it. This assumption, which is called the ``MI assumption'' in this thesis, states that ``An example is positive if at least one of its instances is positive and negative otherwise''. In this thesis, we first categorize current MI methods into a new framework. According to our analysis, there are two main categories of MI methods, instance-based and metadata-based approaches. Then we propose a new assumption for MI learning, called the ``collective assumption''. Although this assumption has been used in some previous MI methods, it has never been explicitly stated,\footnote{As a matter of fact, for some of these methods, it is actually claimed that they use the standard MI assumption stated above.} and this is the first time that it is formally specified. Using this new assumption we develop new algorithms --- more specifically two instance-based and one metadata-based methods. All of these methods build probabilistic models and thus implement statistical learning algorithms. The exact generative models underlying these methods are explicitly stated and illustrated so that one may clearly understand the situations to which they can best be applied. The empirical results presented in this thesis show that they are competitive on standard benchmark datasets. Finally, we explore some practical applications of MI learning, both existing and new ones. This thesis makes three contributions: a new framework for MI learning, new MI methods based on this framework and experimental results for new applications of MI learning.
|
2 |
A Comparison of Multi-instance Learning AlgorithmsDong, Lin January 2006 (has links)
Motivated by various challenging real-world applications, such as drug activity prediction and image retrieval, multi-instance (MI) learning has attracted considerable interest in recent years. Compared with standard supervised learning, the MI learning task is more difficult as the label information of each training example is incomplete. Many MI algorithms have been proposed. Some of them are specifically designed for MI problems whereas others have been upgraded or adapted from standard single-instance learning algorithms. Most algorithms have been evaluated on only one or two benchmark datasets, and there is a lack of systematic comparisons of MI learning algorithms. This thesis presents a comprehensive study of MI learning algorithms that aims to compare their performance and find a suitable way to properly address different MI problems. First, it briefly reviews the history of research on MI learning. Then it discusses five general classes of MI approaches that cover a total of 16 MI algorithms. After that, it presents empirical results for these algorithms that were obtained from 15 datasets which involve five different real-world application domains. Finally, some conclusions are drawn from these results: (1) applying suitable standard single-instance learners to MI problems can often generate the best result on the datasets that were tested, (2) algorithms exploiting the standard asymmetric MI assumption do not show significant advantages over approaches using the so-called collective assumption, and (3) different MI approaches are suitable for different application domains, and no MI algorithm works best on all MI problems.
|
3 |
Learning Instance Weights in Multi-Instance LearningFoulds, James Richard January 2008 (has links)
Multi-instance (MI) learning is a variant of supervised machine learning, where each learning example contains a bag of instances instead of just a single feature vector. MI learning has applications in areas such as drug activity prediction, fruit disease management and image classification. This thesis investigates the case where each instance has a weight value determining the level of influence that it has on its bag's class label. This is a more general assumption than most existing approaches use, and thus is more widely applicable. The challenge is to accurately estimate these weights in order to make predictions at the bag level. An existing approach known as MILES is retroactively identified as an algorithm that uses instance weights for MI learning, and is evaluated using a variety of base learners on benchmark problems. New algorithms for learning instance weights for MI learning are also proposed and rigorously evaluated on both artificial and real-world datasets. The new algorithms are shown to achieve better root mean squared error rates than existing approaches on artificial data generated according to the algorithms' underlying assumptions. Experimental results also demonstrate that the new algorithms are competitive with existing approaches on real-world problems.
|
4 |
Event Detection and Extraction from News ArticlesWang, Wei 21 February 2018 (has links)
Event extraction is a type of information extraction(IE) that works on extracting the specific knowledge of certain incidents from texts. Nowadays the amount of available information (such as news, blogs, and social media) grows in exponential order. Therefore, it becomes imperative to develop algorithms that automatically extract the machine-readable information from large volumes of text data. In this dissertation, we focus on three problems in obtaining event-related information from news articles. (1) The first effort is to comprehensively analyze the performance and challenges in current large-scale event encoding systems. (2) The second problem involves event detection and critical information extractions from news articles. (3) Third, the efforts concentrate on event-encoding which aims to extract event extent and arguments from texts.
We start by investigating the two large-scale event extraction systems (ICEWS and GDELT) in the political science domain. We design a set of experiments to evaluate the quality of the extracted events from the two target systems, in terms of reliability and correctness. The results show that there exist significant discrepancies between the outputs of automated systems and hand-coded system and the accuracy of both systems are far away from satisfying. These findings provide preliminary background and set the foundation for using advanced machine learning algorithms for event related information extraction.
Inspired by the successful application of deep learning in Natural Language Processing (NLP), we propose a Multi-Instance Convolutional Neural Network (MI-CNN) model for event detection and critical sentences extraction without sentence level labels. To evaluate the model, we run a set of experiments on a real-world protest event dataset. The result shows that our model could be able to outperform the strong baseline models and extract the meaningful key sentences without domain knowledge and manually designed features.
We also extend the MI-CNN model and propose an MIMTRNN model for event extraction with distant supervision to overcome the problem of lacking fine level labels and small size training data. The proposed MIMTRNN model systematically integrates the RNN, Multi-Instance Learning, and Multi-Task Learning into a unified framework. The RNN module aims to encode into the representation of entity mentions the sequential information as well as the dependencies between event arguments, which are very useful in the event extraction task. The Multi-Instance Learning paradigm makes the system does not require the precise labels in entity mention level and make it perfect to work together with distant supervision for event extraction. And the Multi-Task Learning module in our approach is designed to alleviate the potential overfitting problem caused by the relatively small size of training data. The results of the experiments on two real-world datasets(Cyber-Attack and Civil Unrest) show that our model could be able to benefit from the advantage of each component and outperform other baseline methods significantly. / Ph. D. / Nowadays the amount of available information (such as news, blogs, and social media) grows in exponential order. The demand of making use of the massive on-line information during decision making process becomes increasing intensive. Therefore, it is imperative to develop algorithms that automatically extract the formatted information from large volumes of the unstructured text data. In this dissertation, we focus on three problems in obtaining event-related information from news articles. (1) The first effort is to comprehensively analyze the performance and challenges in current large-scale event encoding systems. (2) The second problem involves detecting the event and extracting key information about the event in the article. (3) Third, the efforts concentrate on extracting the arguments of the event from the text. We found that there exist significant discrepancies between the outputs of automated systems and hand-coded system and the accuracy of current event extraction systems are far away from satisfying. These findings provide preliminary background and set the foundation for using advanced machine learning algorithms for event related information extraction. Our experiments on two real-world event extraction tasks (Cyber-Attack and Civil Unrest) show the effectiveness of our deep learning approaches for detecting and extracting the event information from unstructured text data.
|
5 |
A probabilistic framework and algorithms for modeling and analyzing multi-instance dataBehmardi, Behrouz 28 November 2012 (has links)
Multi-instance data, in which each object (e.g., a document) is a collection of instances
(e.g., word), are widespread in machine learning, signal processing, computer vision,
bioinformatic, music, and social sciences. Existing probabilistic models, e.g., latent
Dirichlet allocation (LDA), probabilistic latent semantic indexing (pLSI), and discrete
component analysis (DCA), have been developed for modeling and analyzing multiinstance
data. Such models introduce a generative process for multi-instance data which
includes a low dimensional latent structure. While such models offer a great freedom
in capturing the natural structure in the data, their inference may present challenges.
For example, the sensitivity in choosing the hyper-parameters in such models, requires
careful inference (e.g., through cross-validation) which results in large computational
complexity. The inference for fully Bayesian models which contain no hyper-parameters
often involves slowly converging sampling methods. In this work, we develop approaches
for addressing such challenges and further enhancing the utility of such models.
This dissertation demonstrates a unified convex framework for probabilistic modeling
of multi-instance data. The three main aspects of the proposed framework are as follows.
First, joint regularization is incorporated into multiple density estimation to simultaneously
learn the structure of the distribution space and infer each distribution. Second,
a novel confidence constraints framework is used to facilitate a tuning-free approach to
control the amount of regularization required for the joint multiple density estimation
with theoretical guarantees on correct structure recovery. Third, we formulate the problem
using a convex framework and propose efficient optimization algorithms to solve
it.
This work addresses the unique challenges associated with both discrete and continuous
domains. In the discrete domain we propose a confidence-constrained rank minimization
(CRM) to recover the exact number of topics in topic models with theoretical
guarantees on recovery probability and mean squared error of the estimation. We provide
a computationally efficient optimization algorithm for the problem to further the
applicability of the proposed framework to large real world datasets. In the continuous
domain, we propose to use the maximum entropy (MaxEnt) framework for multi-instance
datasets. In this approach, bags of instances are represented as distributions using the
principle of MaxEnt. We learn basis functions which span the space of distributions for
jointly regularized density estimation. The basis functions are analogous to topics in a
topic model.
We validate the efficiency of the proposed framework in the discrete and continuous
domains by extensive set of experiments on synthetic datasets as well as on real world
image and text datasets and compare the results with state-of-the-art algorithms. / Graduation date: 2013
|
Page generated in 0.1247 seconds