• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visualization of Gene-Evaluation Value in Multi-Objective Problem and Feedback for Efficient Search

Furuhashi, Takeshi, Yoshikawa, Tomohiro, Ishiguro, Hidetaka January 2008 (has links)
Session ID: SA-G4-3 / Joint 4th International Conference on Soft Computing and Intelligent Systems and 9th International Symposium on advanced Intelligent Systems, September 17-21, 2008, Nagoya University, Nagoya, Japan
2

Heuristic Algorithms for Nurse Rostering Problem / Darbų grafikų sveikatos priežiūros įstaigose optimizavimas

Liogys, Mindaugas 30 September 2013 (has links)
In the dissertation the nurse rostering problem is investigated. The formulation of the problem is based on real-world data of one of the largest healthcare centers in Lithuania. Most recent publications that tackle the nurse rostering problem and the methods for solving the nurse rostering problem are reviewed, the mathematical formulation of the single objective and the multi-objective nurse rostering problem is presented, the requirements for the roster are described and a new method for solving the single objective and the multi-objective nurse rostering problem is proposed in this dissertation. / Disertacijoje nagrinėjamas sveikatos priežiūros įstaigos darbuotojų darbų grafikų optimizavimo uždavinys, kuris formuluojamas ir sprendžiamas, remiantis vienos didžiausių Lietuvos sveikatos priežiūros įstaigų, realiais duomenimis. Disertacijoje apžvelgiami darbų grafikų optimizavimo uždaviniai bei jų sprendimo metodai. Pateikiama nagrinėjamo darbų grafikų vienakriterio ir daugiakriterio optimizavimo uždavinių matematinės formuluotės. Aprašomos sąlygos, kurias turi tenkinti sudaromasis darbų grafikas. Nagrinėjami metodai, tiek vienakriteriams, tiek daugiakriteriams darbų grafikų optimizavimo uždaviniams spręsti. Pasiūlytas naujas metodas, kuris yra efektyvesnis nei kiti nagrinėti metodai sprendžiant disertacijoje suformuluotą uždavinį.
3

Optimisation du fonctionnement d'un générateur de hiérarchies mémoires pour les systèmes de vision embarquée / Optimization of the operation of a generator of memory hierarchies for embedded vision systems

Hadj Salem, Khadija 26 April 2018 (has links)
Les recherches de cette thèse portent sur la mise en oeuvre des méthodes de la rechercheopérationnelle (RO) pour la conception de circuits numériques dans le domaine du traitementdu signal et de l’image, plus spécifiquement pour des applications multimédia et de visionembarquée.Face à la problématique de “Memory Wall”, les concepteurs de systèmes de vision embarquée,Mancini et al. (Proc.DATE, 2012), ont proposé un générateur de hiérarchies mémoiresad-hoc dénommé Memory Management Optimization (MMOpt). Cet atelier de conception estdestiné aux traitements non-linéaires afin d’optimiser la gestion des accès mémoires de cestraitements. Dans le cadre de l’outil MMOpt, nous abordons la problématique d’optimisationliée au fonctionnement efficace des circuits de traitement d’image générés par MMOpt visantl’amélioration des enjeux de performance (contrainte temps-réel), de consommation d’énergieet de coût de production (contrainte d’encombrement).Ce problème électronique a été modélisé comme un problème d’ordonnancement multiobjectif,appelé 3-objective Process Scheduling and Data Prefetching Problem (3-PSDPP), reflétantles 3 principaux enjeux électroniques considérés. À notre connaissance, ce problème n’apas été étudié avant dans la littérature de RO. Une revue de l’état de l’art sur les principaux travauxliés à cette thèse, y compris les travaux antérieurs proposés par Mancini et al. (Proc.DATE,2012) ainsi qu’un bref aperçu sur des problèmes voisins trouvés dans la littérature de RO,a ensuite été faite. En outre, la complexité de certaines variantes mono-objectif du problèmed’origine 3-PSDPP a été établie. Des approches de résolution, y compris les méthodes exactes(PLNE) et les heuristiques constructives, sont alors proposées. Enfin, la performance de cesméthodes a été comparée par rapport à l’algorithme actuellement utilisé dans l’outil MMOpt,sur des benchmarks disponibles dans la littérature ainsi que ceux fournis par Mancini et al.(Proc.DATE, 2012).Les solutions obtenues sont de très bonne qualité et présentent une piste prometteuse pouroptimiser les performances des hiérarchies mémoires produites par MMOpt. En revanche, vuque les besoins de l’utilisateur de l’outil sont contradictoires, il est impossible de parler d’unesolution unique en optimisant simultanément les trois critères considérés. Un ensemble debonnes solutions de compromis entre ces trois critères a été fourni. L’utilisateur de l’outilMMOpt peut alors décider de la solution qui lui est la mieux adaptée. / The research of this thesis focuses on the application of the Operations Research (OR)methodology to design new optimization algorithms to enable low cost and efficient embeddedvision systems, or more generally devices for multimedia applications such as signal and imageprocessing.The design of embedded vision systems faces the “Memory Wall” challenge regarding thehigh latency of memories holding big image data. For the case of non-linear image accesses, onesolution has been proposed by Mancini et al. (Proc. DATE 2012) in the form of a software tool,called Memory Management Optimization (MMOpt), that creates an ad-hoc memory hierarchiesfor such a treatment. It creates a circuit called a Tile Processing Unit (TPU) that containsthe circuit for the treatment. In this context, we address the optimization challenge set by theefficient operation of the circuits produced by MMOpt to enhance the 3 main electronic designcharacteristics. They correspond to the energy consumption, performance and size/productioncost of the circuit.This electronic problem is formalized as a 3-objective scheduling problem, which is called3-objective Process Scheduling and Data Prefetching Problem (3-PSDPP), reflecting the 3 mainelectronic design characteristics under consideration. To the best of our knowledge, this problemhas not been studied before in the OR literature. A review of the state of the art, including theprevious work proposed by Mancini et al. (Proc.DATE, 2012) as well as a brief overview onrelated problems found in the OR literature, is then made. In addition, the complexity of someof the mono-objective sub-problems of 3-PSDPP problem is established. Several resolutionapproaches, including exact methods (ILP) and polynomial constructive heuristics, are thenproposed. Finally, the performance of these methods is compared, on benchmarks available inthe literature, as well as those provided by Mancini et al. (Proc.DATE, 2012), against the onecurrently in use in the MMOpt tool.The results show that our algorithms perform well in terms of computational efficiency andsolution quality. They present a promising track to optimize the performance of the TPUs producedby MMOpt. However, since the user’s needs of the MMOpt tool are contradictory, such aslow cost, low energy and high performance, it is difficult to find a unique and optimal solutionto optimize simultaneously the three criteria under consideration. A set of good compromisesolutions between these three criteria was provided. The MMOpt’s user can then choose thebest compromise solution he wants or needs.
4

AI-Assisted Optimization Framework for Advanced EM Problems

Rosatti, Pietro 02 July 2024 (has links)
This thesis concerns the study, development and analysis of innovative artificial intelligence (AI)-driven optimization techniques within the System-by-Design (SbD) framework aimed at efficiently addressing the computational complexity inherent in advanced electromagnetic (EM) problems. By leveraging the available a-priori information as well as the proper integration of machine learning (ML) techniques with intelligent exploration strategies, the SbD paradigm enables the effective and reliable solution of the EM problem at hand, with user-defined performance and in a reasonable amount of time. The flexibility of the AI-driven SbD framework is demonstrated in practice with the implementation of two solution strategies to address the fully non-linear inverse scattering problem (ISP) for the detection and imaging of buried objects in ground penetrating radar (GPR)-based applications, and to address the design and optimization of mm-wave automotive radars that comply multiple challenging and contrasting requirements. A comprehensive set of numerical experiments is reported to demonstrate the efficacy and computational efficiency of the SbD-based optimization techniques in solving complex EM problems.

Page generated in 0.3858 seconds