• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Intelligent based Packet Scheduling Scheme using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) Technology for 5G. Design and Investigation of Bandwidth Management Technique for Service-Aware Traffic Engineering using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) for 5G

Mustapha, Oba Z. January 2019 (has links)
Multi-Protocol Label Switching (MPLS) makes use of traffic engineering (TE) techniques and a variety of protocols to establish pre-determined highly efficient routes in Wide Area Network (WAN). Unlike IP networks in which routing decision has to be made through header analysis on a hop-by-hop basis, MPLS makes use of a short bit sequence that indicates the forwarding equivalence class (FEC) of a packet and utilises a predefined routing table to handle packets of a specific FEC type. Thus header analysis of packets is not required, resulting in lower latency. In addition, packets of similar characteristics can be routed in a consistent manner. For example, packets carrying real-time information can be routed to low latency paths across the networks. Thus the key success to MPLS is to efficiently control and distribute the bandwidth available between applications across the networks. A lot of research effort on bandwidth management in MPLS networks has already been devoted in the past. However, with the imminent roll out of 5G, MPLS is seen as a key technology for mobile backhaul. To cope with the 5G demands of rich, context aware and multimedia-based user applications, more efficient bandwidth management solutions need to be derived. This thesis focuses on the design of bandwidth management algorithms, more specifically QoS scheduling, in MPLS network for 5G mobile backhaul. The aim is to ensure the reliability and the speed of packet transfer across the network. As 5G is expected to greatly improve the user experience with innovative and high quality services, users’ perceived quality of service (QoS) needs to be taken into account when deriving such bandwidth management solutions. QoS expectation from users are often subjective and vague. Thus this thesis proposes the use of fuzzy logic based solution to provide service aware and user-centric bandwidth management in order to satisfy requirements imposed by the network and users. Unfortunately, the disadvantage of fuzzy logic is scalability since dependable fuzzy rules and membership functions increase when the complexity of being modelled increases. To resolve this issue, this thesis proposes the use of neuro-fuzzy to solicit interpretable IF-THEN rules.The algorithms are implemented and tested through NS2 and Matlab simulations. The performance of the algorithms are evaluated and compared with other conventional algorithms in terms of average throughput, delay, reliability, cost, packet loss ratio, and utilization rate. Simulation results show that the neuro-fuzzy based algorithm perform better than fuzzy and other conventional packet scheduling algorithms using IP and IP over MPLS technologies. / Tertiary Education Trust Fund (TETFUND)
12

Intelligent supervision of flexible optical networks / Supervision intelligente des réseaux optiques flexibles

Kanj, Matthieu 20 December 2016 (has links)
Les réseaux optiques dynamiques et flexibles font partie des scénarios d'évolution des réseaux de transport optique. Ceux-ci formeront la base de la nouvelle génération des réseaux optiques de demain et permettront le déploiement efficace des services tel que le Cloud Computing. Cette évolution est destinée à apporter flexibilité et automatisation à la couche optique, mais s'accompagne d'une complexité supplémentaire, notamment au niveau de la gestion et de la commande de cette toute nouvelle génération de réseau. Jusqu'à récemment, les protocoles de routage et de signalisation normalisés ont pris en compte plusieurs paramètres physiques tels que l'information spectrale de la bande passante, le format de modulation, et la régénération optique. Cependant, d'autres paramètres sont encore nécessaires (par exemple, les puissances optiques des liens, le gain des amplificateurs) afin de faire fonctionner efficacement de grands réseaux. Dans ce contexte, il y a un besoin d'étudier les réseaux optiques existants ainsi que les différentes méthodes de prise en compte de la couche photonique dans le plan de contrôle. Le but est d'avoir un réseau optique automatique, flexible et programmable, mais surtout efficace de point de vue économique et opérationnel. L'utilisation de la technologie à grille flexible a un impact sur les réseaux optiques existants, où presque tous les équipements devront être remplacés, ce qui entraînera un coût additionnel pour les opérateurs. Dans ce travail, nous étudions les réseaux optiques actuels et évaluons l'impact de la flexibilité sur les infrastructures existantes. Ensuite, nous identifions plusieurs paramètres optiques à contrôler et proposons des extensions protocolaires afin d'intégrer ces paramètres dans un plan de contrôle GMPLS. De plus, nous développons les algorithmes de routage et de signalisation qui permettent la mise en œuvre d'un plan de contrôle efficace qui répond au besoin de la flexibilité. Enfin, l'ensemble de nos propositions et de nos solutions sont évaluées sur plusieurs topologies réseaux avec des modèles de trafic différents dans le but de valider leur pertinence. / Dynamic and flexible optical networks are among the evolution scenarios of the optical transport networks. These form the basis of the new generation of optical networks of tomorrow and enable the effective deployment of services such as cloud computing. This evolution is intended to provide flexibility and automation to the optical layer. However, it results in additional complexity, particularly in terms of the management and control of this new network generation. Until recently, the standardized routing and signaling protocols have been taking into account several optical parameters like the spectral bandwidth information, modulation format, and optical regeneration. However, other parameters (e.g., link optical powers, gain of optical amplifiers) are still required in order to efficiently operate large optical networks. In this context, there is a need to study the existing optical networks and the different integration methods of the photonic layer in a control plane. The goal is to get an automatic optical network that is flexible, programmable, and at the same time efficient from an economical and operational perspective. The use of flexible grid technology has an impact on existing optical networks, where almost all the equipment must be replaced, resulting in an additional cost to network operators. In this work, we study the current optical networks and evaluate the impact of flexibility on the existing infrastructures. Then, we identify several physical parameters to be controlled and propose protocol extensions in order to integrate these parameters in the GMPLS control plane. In addition, we develop the routing and signaling algorithms that allow the implementation of an efficient control plane that addresses the need for flexibility. Finally, the set of our proposals and solutions are evaluated on multiple network topologies with different traffic patterns in order to validate their relevance.

Page generated in 0.0918 seconds