Spelling suggestions: "subject:"multiclass classification"" "subject:"multi_class classification""
21 |
Classificação de dados estacionários e não estacionários baseada em grafos / Graph-based classification for stationary and non-stationary dataJoão Roberto Bertini Júnior 24 January 2011 (has links)
Métodos baseados em grafos consistem em uma poderosa forma de representação e abstração de dados que proporcionam, dentre outras vantagens, representar relações topológicas, visualizar estruturas, representar grupos de dados com formatos distintos, bem como, fornecer medidas alternativas para caracterizar os dados. Esse tipo de abordagem tem sido cada vez mais considerada para solucionar problemas de aprendizado de máquina, principalmente no aprendizado não supervisionado, como agrupamento de dados, e mais recentemente, no aprendizado semissupervisionado. No aprendizado supervisionado, por outro lado, o uso de algoritmos baseados em grafos ainda tem sido pouco explorado na literatura. Este trabalho apresenta um algoritmo não paramétrico baseado em grafos para problemas de classificação com distribuição estacionária, bem como sua extensão para problemas que apresentam distribuição não estacionária. O algoritmo desenvolvido baseia-se em dois conceitos, a saber, 1) em uma estrutura chamada grafo K-associado ótimo, que representa o conjunto de treinamento como um grafo esparso e dividido em componentes; e 2) na medida de pureza de cada componente, que utiliza a estrutura do grafo para determinar o nível de mistura local dos dados em relação às suas classes. O trabalho também considera problemas de classificação que apresentam alteração na distribuição de novos dados. Este problema caracteriza a mudança de conceito e degrada o desempenho do classificador. De modo que, para manter bom desempenho, é necessário que o classificador continue aprendendo durante a fase de aplicação, por exemplo, por meio de aprendizado incremental. Resultados experimentais sugerem que ambas as abordagens apresentam vantagens na classificação de dados em relação aos algoritmos testados / Graph-based methods consist in a powerful form for data representation and abstraction which provides, among others advantages, representing topological relations, visualizing structures, representing groups of data with distinct formats, as well as, supplying alternative measures to characterize data. Such approach has been each time more considered to solve machine learning related problems, mainly concerning unsupervised learning, like clustering, and recently, semi-supervised learning. However, graph-based solutions for supervised learning tasks still remain underexplored in literature. This work presents a non-parametric graph-based algorithm suitable for classification problems with stationary distribution, as well as its extension to cope with problems of non-stationary distributed data. The developed algorithm relies on the following concepts, 1) a graph structure called optimal K-associated graph, which represents the training set as a sparse graph separated into components; and 2) the purity measure for each component, which uses the graph structure to determine local data mixture level in relation to their classes. This work also considers classification problems that exhibit modification on distribution of data flow. This problem qualifies concept drift and worsens any static classifier performance. Hence, in order to maintain accuracy performance, it is necessary for the classifier to keep learning during application phase, for example, by implementing incremental learning. Experimental results, concerning both algorithms, suggest that they had presented advantages over the tested algorithms on data classification tasks
|
22 |
Brain Tumor Grade Classification in MR images using Deep Learning / Klassificering av hjärntumör-grad i MR-bilder genom djupinlärningChatzitheodoridou, Eleftheria January 2022 (has links)
Brain tumors represent a diverse spectrum of cancer types which can induce grave complications and lead to poor life expectancy. Amongst the various brain tumor types, gliomas are primary brain tumors that compose about 30% of adult brain tumors. They are graded according to the World Health Organization into Grades 1 to 4 (G1-G4), where G4 is the highest grade with the highest malignancy and poor prognosis. Early diagnosis and classification of brain tumor grade is very important since it can improve the treatment procedure and (potentially) prolong a patient's life, since life expectancy largely depends on the level of malignancy and the tumor's histological characteristics. While clinicians have diagnostic tools they use as a gold standard, such as biopsies these are either invasive or costly. A widely used example of a non-invasive technique is magnetic resonance imaging, due to its ability to produce images with different soft-tissue contrast and high spatial resolution thanks to multiple imaging sequences. However, the examination of such images can be overwhelming for radiologists due to the overall large amount of data. Deep learning approaches, on the other hand, have shown great potential in brain tumor diagnosis and can assist radiologists in the decision-making process. In this thesis, brain tumor grade classification in MR images is performed using deep learning. Two popular pre-trained CNN models (VGG-19, ResNet50) were employed using single MR modalities and combinations of them to classify gliomas into three grades. All models were trained using data augmentation on 2D images from the TCGA dataset, which consisted of 3D volumes from 142 anonymized patients. The models were evaluated based on accuracy, precision, recall, F1-score, AUC score, as well as the Wilcoxon Signed-Rank test to establish if one classifier was statistically significantly better than the other. Since deep learning models are typically 'black box' models and can be difficult to interpret by non-experts, Gradient-weighted Class Activation Mapping (Grad-CAM) was used in order to address model explainability. For single modalities, VGG-19 displayed the highest performance with a test accuracy of 77.86%, whilst for combinations of two and three modalities T1ce, FLAIR and T2, T1ce, FLAIR were the best performing ones for VGG-19 with a test accuracy of 74.48%, 75.78%, respectively. Statistical comparisons indicated that for single MR modalities and combinations of two MR modalities, there was not a statistically significant difference between the two classifiers, whilst for combination of three modalities, one model was better than the other. However, given the small size of the test population, these comparisons have low statistical power. The use of Grad-CAM for model explainability indicated that ResNet50 was able to localize the tumor region better than VGG-19.
|
23 |
Machine Learning based Predictive Data Analytics for Embedded Test SystemsAl Hanash, Fayad January 2023 (has links)
Organizations gather enormous amounts of data and analyze these data to extract insights that can be useful for them and help them to make better decisions. Predictive data analytics is a crucial subfield within data analytics that make accurate predictions. Predictive data analytics extracts insights from data by using machine learning algorithms. This thesis presents the supervised learning algorithm to perform predicative data analytics in Embedded Test System at the Nordic Engineering Partner company. Predictive Maintenance is a concept that is often used in manufacturing industries which refers to predicting asset failures before they occur. The machine learning algorithms used in this thesis are support vector machines, multi-layer perceptrons, random forests, and gradient boosting. Both binary and multi-class classifier have been provided to fit the models, and cross-validation, sampling techniques, and a confusion matrix have been provided to accurately measure their performance. In addition to accuracy, recall, precision, f1, kappa, mcc, and roc auc measurements are used as well. The prediction models that are fitted achieve high accuracy.
|
24 |
A Machine Learning Model of Perturb-Seq Data for use in Space Flight Gene Expression Profile AnalysisLiam Fitzpatric Johnson (18437556) 27 April 2024 (has links)
<p dir="ltr">The genetic perturbations caused by spaceflight on biological systems tend to have a system-wide effect which is often difficult to deconvolute into individual signals with specific points of origin. Single cell multi-omic data can provide a profile of the perturbational effects but does not necessarily indicate the initial point of interference within a network. The objective of this project is to take advantage of large scale and genome-wide perturbational or Perturb-Seq datasets by using them to pre-train a generalist machine learning model that is capable of predicting the effects of unseen perturbations in new data. Perturb-Seq datasets are large libraries of single cell RNA sequencing data collected from CRISPR knock out screens in cell culture. The advent of generative machine learning algorithms, particularly transformers, make it an ideal time to re-assess large scale data libraries in order to grasp cell and even organism-wide genomic expression motifs. By tailoring an algorithm to learn the downstream effects of the genetic perturbations, we present a pre-trained generalist model capable of predicting the effects of multiple perturbations in combination, locating points of origin for perturbation in new datasets, predicting the effects of known perturbations in new datasets, and annotation of large-scale network motifs. We demonstrate the utility of this model by identifying key perturbational signatures in RNA sequencing data from spaceflown biological samples from the NASA Open Science Data Repository.</p>
|
25 |
Silent speech recognition in EEG-based brain computer interfaceGhane, Parisa January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A Brain Computer Interface (BCI) is a hardware and software system that establishes direct communication between human brain and the environment. In a BCI system, brain messages pass through wires and external computers instead of the normal pathway of nerves and muscles. General work ow in all BCIs is to measure brain activities, process and then convert them into an output readable for a computer.
The measurement of electrical activities in different parts of the brain is called electroencephalography (EEG). There are lots of sensor technologies with different number of electrodes to record brain activities along the scalp. Each of these electrodes captures a weighted sum of activities of all neurons in the area around that electrode.
In order to establish a BCI system, it is needed to set a bunch of electrodes on scalp, and a tool to send the signals to a computer for training a system that can find the important information, extract them from the raw signal, and use them to recognize the user's intention. After all, a control signal should be generated based on the application.
This thesis describes the step by step training and testing a BCI system that can be used for a person who has lost speaking skills through an accident or surgery, but still has healthy brain tissues. The goal is to establish an algorithm, which recognizes different vowels from EEG signals. It considers a bandpass filter to remove signals' noise and artifacts, periodogram for feature extraction, and Support Vector Machine (SVM) for classification.
|
Page generated in 0.1199 seconds