• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Multi-Disciplinary Design Optimization Framework for a Strut-Braced Wing Transport Aircraft in PACELAB APD 3.1

Riggins, Benjamin Kirby 04 June 2015 (has links)
The purpose of this study was to extend the analysis methods in PACELAB APD 3.1, a recent commercially available aircraft preliminary design tool with potential for MDO applications, for higher fidelity with physics-based instead of empirical methods and to enable the analysis of nonconventional aircraft configurations. The implementation of these methods was first validated against both existing models and wind tunnel data. Then, the original and extended PACELAB APD versions were used to perform minimum-fuel optimizations for both a traditional cantilever and strut-braced wing aircraft for a medium-range regional transport mission similar to that of a 737-type aircraft, with a minimum range of 3,115 nm and a cruise Mach number of 0.78. The aerodynamics, engine size / weight estimation and structural modules were heavily modified and extended to accomplish this. Comparisons to results for the same mission generated with FLOPS and VT MDO are also discussed. For the strut-braced configuration, large fuel savings on the order of 37% over the baseline 737-800 aircraft are predicted, while for the cantilever aircraft savings of 10-30% are predicted depending on whether the default or VT methods are utilized in the PACELAB analysis. This demonstrates the potential of the strut-braced configuration for reducing fuel costs, as well as the benefit of MDO in the aircraft conceptual design process. For the cantilever aircraft, FLOPS and VT MDO predict fuel savings of 8% and 23%, respectively. VT MDO predicts a fuel savings of 28% for the strut-braced aircraft over the baseline. / Master of Science
2

Exploring the design space for a hybrid-electric regional aircraft with multidisciplinary design optimisation methods

Thauvin, Jérôme 22 October 2018 (has links) (PDF)
Envisioned in the next 15 to 30 years in the aviation industry, hybrid-electric propulsion offers theopportunity to integrate new technology bricks providing additional degrees of freedom to improveoverall aircraft performance, limit the use of non-renewable fossil resources and reduce the aircraftenvironmental footprint. Today, hybrid-electric technology has mainly been applied to groundbased transports, cars, buses and trains, but also ships. The feasibility in the air industry has to beestablished and the improvement in aircraft performance has still to be demonstrated. This thesisaims to evaluate the energy savings enabled by electric power in the case of a 70-seat regionalaircraft. First, energy saving opportunities are identified from the analysis of the propulsion andaerodynamic efficiencies of a conventional twin turboprop aircraft. The potential benefits comingfrom the variation of the size of prime movers and the new power managements with the use ofbatteries are studied. Also, possible aerodynamic improvements enabled by new propellerintegrations are considered. For each topic, simplified analyses provide estimated potential ofenergy saving. These results are then used to select four electrified propulsion systems that arestudied in more detail in the thesis: a parallel-hybrid, a turboelectric with distributed propulsion, apartial-turboelectric with high-lift propellers and an all-electric. Evaluating the selected hybrid-electric aircraft is even more challenging that the sizing of the different components, the energymanagement strategies and the mission profiles one can imagine are many and varied. Inaddition, the overall aircraft design process and the evaluation tools need to be adaptedaccordingly. The Airbus in-house Multidisciplinary Design Optimisation platform named XMDO,which includes most of the required modifications, is eventually selected and further developedduring the thesis. For examples, new parametric component models (blown wing, electrical motor,gas turbine, propeller, etc…) are created, a generic formulation for solving the propulsion systemequilibrium is implemented, and simulation models for take-off and landing are improved. In orderto evaluate the energy efficiency of the hybrid-electric aircraft, a reference aircraft equipped with aconventional propulsion system is first optimised with XMDO. Different optimisation algorithms aretested, and the consistency of the new design method is checked. Then, all the hybrid-electricconfigurations are optimised under the same aircraft design requirements as the reference. Forthe electrical components, two levels of technology are defined regarding the service entry date ofthe aircraft. The optimisation results for the turboelectric and the partial-turboelectric are used tobetter understand the potential aerodynamic improvements identified in the first part of the thesis.Optimisations for the parallel-hybrid, including different battery recharge scenarios, highlight thebest energy management strategies when batteries are used as secondary energy sources. All theresults are finally compared to the reference in terms of fuel and energy efficiencies, for the twoelectrical technology levels. The last part of the thesis focuses on the all-electric aircraft, and aimsat identifying the minimum specific energy required for batteries as a function of the aircraft designrange. A trade study is also carried-out in accordance with the service entry date for the otherelectrical components
3

Conceptual Design Optimization Of A Nano-satellite Launcher

Arslantas, Yunus Emre 01 April 2012 (has links) (PDF)
Recent developments in technology are changing the trend both in satellite design and application of that technology. As the number of small satellites built by experts from academia and private companies increases, more effective ways of inserting those satellites into orbit is needed. Among the various studies that focus on the launch of such small satellites, research on design of Launch Vehicle tailored for nano-satellites attracts special attention. In this thesis, Multiple Cooling Multi Objective Simulated Annealing algorithm is applied for the conceptual design of Launch vehicle for nano-satellites. A set of fitness functions are cooled individually, and acceptance is based on the maximum value of the acceptance probabilities calculated. Angle of attack and propulsion characteristics are employed as optimization parameters. Algorithm finds the optimum trajectory as well as the design parameters that satisfies user defined constraints. In this study burnout velocity, and payload mass are defined as objectives. The methodolgy is applied for different design scenarios including multistage, air and ground launch vehicles.
4

On the study of surrogate-based optimization methods in aircraft conceptual design

Sohst, Martin 17 March 2022 (has links)
The goal of "greener" aviation is one of the main challenges in aircraft design. The target of Europeans "Flightpath 2050'' and IATA is to reduced the net aviation CO2 emission by 75% relative to 2000 and 50% relative to 2005, respectively. Novel unconventional aircraft claim to increase the efficiency and reduce the environmental impact. Designs differing from the conventional tube-low-wing concept are investigated regarding their performance benefit. The employment of a high aspect ratio wing is an effective way to increase the aerodynamic efficiency. However, the long and slender wing structure is more flexible and thus more prone to aeroelastic effects. Critical phenomena, such as flutter and limit-cycle oscillation are more likely to drive the design. Therefore it is important to assess the interdependence of aerodynamic and structural forces. The effects of the wings flexibility can affect the design and off-design performance, possibly jeopardizing the intended efficiency benefit. To evaluate the different disciplines involved in aircraft design, a multi-disciplinary design optimization environment offers the required tools. While computationally demanding, the obtained solution is more efficient if the disciplines are assessed simultaneously. Equipped with low- and high-fidelity assessments, aircraft performance can be predicted at the preliminary design stage, while mitigating some computational expenses. To further reduce the computational burden, adaptive surrogate modelling approaches can be employed, requiring less computational evaluations while efficiently guiding the optimization process towards improved designs. Considering surrogate models for expensive physics based objective and constraint functions bears the disadvantage of more uncertainty in the models. Thus, a new technique is proposed to utilizing the probability of feasibility for the constraints in combination with a transformed normalized objective function to address the uncertainty consideration. The approach is assessed via mathematical test functions and an engineering application and compared against established methods. The results suggests an applicability of the method, with further improvements to be examined. Limitations are revealed regarding local optima and convergence. Further, the degree of maturity does not yet suffice for industrial applications. In a multi-disciplinary design optimization of a high aspect ratio wing aircraft and a strut braced wing aircraft a more classical EGO approach was therefore the choice of approach. The configurations were optimized towards a multi-objective, blending manufacturing and operational costs. Towards cost efficient evaluations, investigations were performed to incorporate high-fidelity assessments, yet limiting their number by reducing active constraints. Driven by aero-structural and aeroelastic constraints, the novel designs could improve the performance satisfactory. / Graduate
5

Exploring the design space for a hybrid-electric regional aircraft with multidisciplinary design optimisation methods / Exploration de l'espace de conception d'un avion régional hybride par optimisation multidisciplinaire

Thauvin, Jérôme 22 October 2018 (has links)
Envisagée à partir des 15 à 30 années à venir dans l'industrie aéronautique, la propulsion hybrideélectrique permet d'intégrer de nouvelles briques technologiques offrant des degrés de libertésupplémentaires pour améliorer les performances des aéronefs, limiter l'utilisation de ressourcesfossiles et réduire l’impact environnemental des avions. Aujourd'hui, la technologie hybrideélectrique est principalement appliquée aux transports terrestres, aux voitures, aux bus et auxtrains, mais aussi aux navires. La faisabilité pour le transport aérien doit encore être établie etl'amélioration des performances des aéronefs reste à démontrer. Cette thèse vise à évaluer lesgains énergétiques apportés par l'hybridation électrique d'un avion régional de 70 places. Toutd'abord, les opportunités d'économie d'énergie sont identifiées à partir de l'analyse desrendements propulsifs et aérodynamiques d'un avion bi-turbopropulsé conventionnel. Les gainspotentiels provenant de la variation de la taille des moteurs principaux et de nouvelles gestions depuissance par l'utilisation de batteries sont étudiés. De plus, les possibles améliorationsaérodynamiques émanant de nouveaux positionnements des hélices sont considérées. Pourchaque sujet, des analyses simplifiées fournissent une estimation d'économie d'énergie. Cesrésultats sont ensuite utilisés pour sélectionner quatre systèmes propulsifs électrifiés qui sontétudiés plus en détail dans la thèse: un hybride parallèle, un turboélectrique avec propulsiondistribuée, un turboélectrique partiel à hélices hypersustentatrices, et un tout-électrique.L'évaluation des avions hybrides électriques sélectionnés est d'autant plus difficile que ledimensionnement des différentes composants, les stratégies de gestion d'énergie et les profils demission que l'on peut imaginer sont nombreux et variés. En outre, le processus global deconception de l'avion et les outils d'évaluation doivent être adaptés en conséquence. L'outilinterne de conception par optimisation multidisciplinaire d'Airbus nommé XMDO, qui inclut laplupart des modifications requises, est finalement sélectionné et développé au cours de la thèse.Par exemple, de nouveaux modèles paramétriques de composants (voilure soufflée, moteurélectrique, turbine à gaz, hélice, etc...) sont créés, une formulation générique pour résoudrel'équilibre du système de propulsion est mise en place, et les modèles de simulation de décollageet d'atterrissage sont améliorés. Afin d'évaluer l'efficacité énergétique des avions hybridesélectriques, un avion de référence équipé d'un système propulsif conventionnel est d'abordoptimisé avec XMDO. Différents algorithmes d'optimisation sont testés, et la consistance de lanouvelle méthode de conception est vérifiée. Par la suite, les configurations hybrides électriquessont toutes optimisées selon les mêmes exigences de conception que l'avion de référence. Pourles composants électriques, deux niveaux de technologie sont définis selon la date d'entrée enservice de l'aéronef. Les résultats d'optimisation pour le turbo-électrique et le turbo-électriquepartiel sont utilisés pour mieux appréhender les gains aérodynamiques potentiels identifiés enpremière partie de thèse. Les optimisations pour l'hybride parallèle, comprenant différentsscénarios de recharge batterie, mettent en évidence les meilleures stratégies de gestion d'énergielorsque des batteries sont utilisées comme sources d'énergie secondaire. Tous les résultats sontfinalement comparés à la référence en termes de consommations de carburant et d'énergie, pourles deux niveaux de technologie électrique. La dernière partie de la thèse se concentre sur l'aviontout électrique. Elle vise à identifier l'énergie spécifique minimale requise pour les batteries enfonction de la distance maximale à parcourir. Une étude de sensibilité est également réalisée enfonction de la date d'entrée en service pour les autres composants électriques / Envisioned in the next 15 to 30 years in the aviation industry, hybrid-electric propulsion offers theopportunity to integrate new technology bricks providing additional degrees of freedom to improveoverall aircraft performance, limit the use of non-renewable fossil resources and reduce the aircraftenvironmental footprint. Today, hybrid-electric technology has mainly been applied to groundbased transports, cars, buses and trains, but also ships. The feasibility in the air industry has to beestablished and the improvement in aircraft performance has still to be demonstrated. This thesisaims to evaluate the energy savings enabled by electric power in the case of a 70-seat regionalaircraft. First, energy saving opportunities are identified from the analysis of the propulsion andaerodynamic efficiencies of a conventional twin turboprop aircraft. The potential benefits comingfrom the variation of the size of prime movers and the new power managements with the use ofbatteries are studied. Also, possible aerodynamic improvements enabled by new propellerintegrations are considered. For each topic, simplified analyses provide estimated potential ofenergy saving. These results are then used to select four electrified propulsion systems that arestudied in more detail in the thesis: a parallel-hybrid, a turboelectric with distributed propulsion, apartial-turboelectric with high-lift propellers and an all-electric. Evaluating the selected hybrid-electric aircraft is even more challenging that the sizing of the different components, the energymanagement strategies and the mission profiles one can imagine are many and varied. Inaddition, the overall aircraft design process and the evaluation tools need to be adaptedaccordingly. The Airbus in-house Multidisciplinary Design Optimisation platform named XMDO,which includes most of the required modifications, is eventually selected and further developedduring the thesis. For examples, new parametric component models (blown wing, electrical motor,gas turbine, propeller, etc…) are created, a generic formulation for solving the propulsion systemequilibrium is implemented, and simulation models for take-off and landing are improved. In orderto evaluate the energy efficiency of the hybrid-electric aircraft, a reference aircraft equipped with aconventional propulsion system is first optimised with XMDO. Different optimisation algorithms aretested, and the consistency of the new design method is checked. Then, all the hybrid-electricconfigurations are optimised under the same aircraft design requirements as the reference. Forthe electrical components, two levels of technology are defined regarding the service entry date ofthe aircraft. The optimisation results for the turboelectric and the partial-turboelectric are used tobetter understand the potential aerodynamic improvements identified in the first part of the thesis.Optimisations for the parallel-hybrid, including different battery recharge scenarios, highlight thebest energy management strategies when batteries are used as secondary energy sources. All theresults are finally compared to the reference in terms of fuel and energy efficiencies, for the twoelectrical technology levels. The last part of the thesis focuses on the all-electric aircraft, and aimsat identifying the minimum specific energy required for batteries as a function of the aircraft designrange. A trade study is also carried-out in accordance with the service entry date for the otherelectrical components
6

Weld Producibility Assessment System : Evaluation of Producibility Assessment tools using Set-based approach in Multi-disciplinary Aerospace Design

Kveselys, Donatas January 2017 (has links)
This thesis is a continuation of design automation studies within research projects financed by VINNOVA (the Swedish Governmental Agency for Innovation Systems) and Knowledge foundation that contributed to the development of producibility assessment system at a global aerospace products supplier, GKN Aerospace Sweden. A case study was carried at the company on Turbine Rear Structure (TRS) component design of a jet engine with the main objective to evaluate weld producibility assessment tools and to demonstrate system’s performance in multi-disciplinary design environment. The context of this thesis is a set-based product design development where several studies, i.e. thermal, structural, aerodynamic etc. are carried concurrently to gather knowledge between their parameter relations. The thesis contributes to the goal of fully integrated producibility assessment in multi-disciplinary studies to support product development process. The problems encountered during the thesis execution involved systematic analysis setup to extract and verify CAD geometry data, assessment of meaningfulness of producibility indicators, development of semi-automated data post-processing module and relating product design to its manufacturing aspects. Commercial and in-house developed software were used extensively to demonstrate the results of the system with the help of continuous company support to mitigate indispensable bottlenecks along the way. The work has led to systematic improvements, determined assessment limitations and most relevant weld producibility aspects. Collected feedback to evaluate prepared demonstrator showed promising results to support product design decisions considering both performance and producibility.

Page generated in 0.0822 seconds