• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 11
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A study of NRD-guide basic structure and an integrated microstrip to NRD-guide transition

Tsai, Jin-lung 11 July 2004 (has links)
Comparing with other dielectric waveguides, NRD (nonradiative dielectric guides) presents advantages of ease of fabrication, low transmission loss, and absence of radiation from bends and discontinuities, making it suitable for realizing compact and high-performance millimeter wave integrated circuits. First, we study the EM theory of NRD to observe the characteristic affected by NRD geometric parameters and introduce multi-mode parameters to analyze mode coupling phenomena in bend and two-layer NRD structures. In order to promote NRD circuit application and transmission performance, we also study an integrated transition between microstrip line and NRD and mode suppressing technique. Finally, the structures mentioned above are all integrated in circuit application.
22

A Hybrid Damper Composed of Elastomer and Piezo Ceramic for Multi-Mode Vibration Control

YUOKA, Teruaki, TAGATANI, Keiji, HAYAKAWA, Yoshikazu, NAKASHIMA, Akira, INAGAKI, Daiyu, OSHIMA, Kazuhiko 01 1900 (has links)
No description available.
23

Multimode entanglement assisted QKD through a free-space maritime channel

Gariano, John, Djordjevic, Ivan B. 05 October 2017 (has links)
When using quantum key distribution (QKD), one of the trade-offs for security is that the generation rate of a secret key is typically very low. Recent works have shown that using a weak coherent source allows for higher secret key generation rates compared to an entangled photon source, when a channel with low loss is considered. In most cases, the system that is being studied is over a fiber-optic communication channel. Here a theoretical QKD system using the BB92 protocol and entangled photons over a free-space maritime channel with multiple spatial modes is presented. The entangled photons are generated from a spontaneous parametric down conversion (SPDC) source of type II. To employ multiple spatial modes, the transmit apparatus will contain multiple SPDC sources, all driven by the pump lasers assumed to have the same intensity. The receive apparatuses will contain avalanche photo diodes (APD), modeled based on the NuCrypt CPDS-1000 detector, and located at the focal point of the receive aperture lens. The transmitter is assumed to be located at Alice and Bob will be located 30 km away, implying no channel crosstalk will be introduced in the measurements at Alices side due to turbulence. To help mitigate the effects of atmospheric turbulence, adaptive optics will be considered at the transmitter and the receiver. An eavesdropper, Eve, is located 15 km from Alice and has no control over the devices at Alice or Bob. Eve is performing the intercept resend attack and listening to the communication over the public channel. Additionally, it is assumed that Eve can correct any aberrations caused by the atmospheric turbulence to determine which source the photon was transmitted from. One, four and nine spatial modes are considered with and without applying adaptive optics and compared to one another.
24

A dynamic heuristics approach for proactive production scheduling under robustness targets

Zahid, Taiba 19 June 2017 (has links) (PDF)
In den vergangenen Jahrzehnten konzentrierte sich das Operations Management auf Optimierungsstrategien, insbesondere wurden Meta-Heuristiken für das komplexe, kombinatorische Problem der ressourcenbegrenzten Ablaufplanung erforscht. In einfachen Worten gehört dieses Problem zu den NP-schweren Problemen, die einen derart großen Lösungsraum besitzen, der mittels Enumerationverfahren rechnerisch unlösbar ist. Daher erfordert die Exploration von optimalen Lösungen andere Methoden als Zufallssuchverfahren. Solche Suchalgorithmen in Meta-Heuristik starten mit einer oder mehreren Ausgangslösung und erkunden den Suchraum nach optimalen Lösungen. Jedoch stellen die existierenden Forschungsansätze zur Lösungssuche nur diejenigen Lösungen bereit, die ausschließlich unter den gegebenen Eingangsbedingungen optimal sind. Diese Eingabebedingungen definieren einen Lösungsraum, in dem alles nach Plan geht. Jedoch ist das in der Praxis sicherlich nicht der Fall. Wie wir sagen, der Wandel ist die einzige Konstante in dieser Welt. Risiken und Unsicherheiten begegnen stets im täglichen Leben. Die vorliegende Dissertation untersucht Optimierungsansätze unter Unsicherheit. Der Forschungsbeitrag ist zweigeteilt. Wie bereits gesagt, wurden Optimierungsstrategien zum Durchsuchen des Lösungsraums in den letzten Jahren stark erforscht. Obwohl es eine anerkannte Tatsache ist, dass die Verbesserung und die Leistung von Optimierungsstrategien stark mit den Initiallösungen korreliert, scheint die Literatur diesbezüglich inexistent, während zumeist auf die Entwicklung von meta-heuristischen Algorithmen wie Genetische Algorithmen und Particle-Swarm-Optimierung fokussiert wird. Die Initiallösungen werden durch simulationsbasierte Strategien entwickelt, die typischerweise gierige Regeln und ereignisbasierte Simulation nutzen. Allerdings verhalten sich kommerzielle Basis-Softwareprodukte meist als Black-Box und stellen keine Informationen über das interne Verhalten bereit. Außerdem erfordern derartige Softwareprodukte meist spezielle Architekturen und missachten Ressourcenbeschränkungen. Die vorliegende Studie diskutiert die ressourcenbeschränkte Projektplanung mit alternativen Modi und schlägt ein simulationsbasiertes Rahmenwerk vor, mit dem ein heuristisches Multi-Pass-Verfahren zur Verfügung gestellt wird. Das erweiterte Multi-Modus-Problem ist in der Lage, den Produktionsbereich in einer besseren Art und Weise nachzubilden, bei dem eine Aktivität von mehreren Ressourcen unterschiedlicher Qualifikation ausgeführt werden kann. Der vorgeschlagene Rahmen diskutiert die Leistung von Algorithmen und verwendet hierfür Benchmark-Instanzen. Das Verhalten verschiedener Projektnetze und deren Eigenschaften werden auch innerhalb des vorgeschlagenen Rahmenwerks bewertet. Darüber hinaus hilft das offene Rahmenwerk, besondere Eigenschaften von Aktivitäten zu analysieren, um deren Verhalten im Fall von Störungen zu prognostizieren. Die traditionellen Methoden der Risikoanalyse schlagen Slack-basierte Maßzahlen vor, um die Effizienz von Basisplänen zu bestimmen. Das Rahmenwerk wird weiter entwickelt, um mit diesem einen Prüfstand zu gestalten, mit dem nicht-reguläre Maßzahlen bestimmt werden können. Diese Maßnahmen werden als Robustheitsindikatoren bezeichnet und korrelieren mit der Verzögerung derartiger Multi-Modus-Probleme. Solche Leistungsmaße können genutzt werden, um die Wirksamkeit von Basisplänen zu bewerten und ihr Verhalten unter Unsicherheiten zu prognostizieren. Die Ergebnisse dieser Tests werden als modifizierte Zielfunktion verwendet, in der ein bi-objektives Leistungsmaß aus Durchlaufzeit und Robustheit eingesetzt wird, um die Effizienz der vorgeschlagenen Heuristiken zu testen. Da diese Leistungsmaße das Verhalten von Aktivitäten unter Störungen zeigen, werden diese auch genutzt, um die Formfaktoren und Puffergrößen für die Entwicklung eines stochastischen Modells zu bestimmen. Die Analyse der Projektergebnisse, durchgeführt mittels Monte-Carlo-Simulationen, unterstützt das Argument von Teilpuffern für die Modellierung von Aktivitätsdauern anstatt Ansätze mit Extrempuffern und PERT-beta-Schätzungen. / Over the past decades, researches in the field of operations management have focused on optimization strategies based on meta-heuristics for the complex-combinatorial problem of resource constrained scheduling. In simple terms, the solution for this particular problem categorized as NP-hard problem, exhibits a large search space, is computationally intractable, and requires techniques other than random search. Meta-heuristic algorithms start with a single or multiple solutions to explore and optimize using deterministic data and retrieve a valid optimum only under specified input conditions. These input conditions define a solution search space for a theoretical world undergoing no disturbance. But change is inherent to the real world; one is faced with risks and uncertainties in everyday life. The present study explores solution methodologies in the face of uncertainties. The contributions of this thesis are two-fold. As mentioned earlier, existing optimization strategies have been vigorously investigated in the past decade with respect to exploring large solution search space. Although, it is an established fact that the improvement and performance of optimization strategies is highly correlated with the initial solutions, existing literature regarding this area is not exhaustive and mostly focuses on the development of meta-heuristic algorithms such as genetic algorithms and particle swarm optimization. The initial solutions are developed through simulation based strategies mainly based on greedy rules and event based simulation. However, the available commercial softwares are primarily modeled as a black box and provide little information as to internal processing. Additionally, such planners require special architecture and disregard resource constraints. The present study discusses the multi-mode resource constrained scheduling problem and proposes a simulation-based framework to provide a multi-pass heuristic method. The extended version of multi-mode problem is able to imitate production floor in an improved manner where a task can be performed with multiple resources with certain qualifications. The performance of the proposed framework was analyzed using benchmark instances. The behavior of different project networks and their characteristics is also evaluated within the proposed framework. In addition, the open framework aids in determining the particular characteristic of tasks in order to analyze and forecast their behavior in case of disruptions. The traditional risk analysis techniques suggest slack-based measures in order to determine the efficiency of baseline schedules. The framework is further developed to design a test bench in order to determine non-regular performance measures named as robustness indicators which correlate with the delay of such cases as multi-mode problem. Such performance measures can be used to indicate the effectiveness of baseline schedules and forecast their behavior. The outputs of these tests are used to modify the objective function which uses makespan and robustness indicators as a bi-objective performance measure in order to test the efficiency of proposed heuristics. Furthermore, since these measures indicate the behavior of tasks under disruptions, they are utilized in order to determine the shape factors and buffers for the development of a stochastic model. The analysis of project outcomes performed through Monte-Carlo simulations supports the argument of partial buffer sizing for modeling activity duration estimates rather than extreme buffer approaches proposed via PERT-beta estimates.
25

Optimization Models for Cost Efficient and Environmentally Friendly Supply Chain Management

Palak, Gokce 14 December 2013 (has links)
This dissertation aims to provide models which will help companies make sustainable logistics management and transportation decisions. These models are extensions of the economic lot sizing model with the availability of multiple replenishment modes. The objective of the models is to minimize total replenishment costs and emissions. The study provides applications of these models on contemporary supply chain problems. Initially, the impact of carbon regulatory mechanisms on the replenishment decisions are analyzed for a biomass supply chain under fixed charge replenishment costs. Then, models are extended to consider multiple-setups replenishment costs for age dependent perishable products. For a cost minimization objective, solution algorithms are proposed to solve cases where one, two or multiple replenishment modes are available. Finally, using a bi-objective model, tradeoffs in costs and emissions are analyzed in a perishable product supply chain.
26

Nonlinear Dynamics of Electrically Actuated Micro Beams for Improved Sensing and Actuation

Zhao, Wen 01 October 2022 (has links)
In this dissertation, we present analytical and experimental investigations of the electrically actuated micro resonators, when using multi-frequency and/or multi-mode excitation, combined with partial electrodes. We aim to understand their interesting frequency performance and use it to improve the sensing and actuation in microelectromechanical systems (MEMS) and explore their potential applications, such as amplification, gas sensing, magnetometer, multi-physical sensors, and digital-to-analog converters. In the first part, we propose a method of the multi-mode excitation (MME). The concept of the multi-mode excitation is demonstrated by utilizing the superposition principle of two vibration modes in the same phase. To fully understand the difference between the single source excitation (SSE) and multi-mode excitation, we derive the dynamic equations of motions of the electrically-actuated micro cantilever beam and clamped-clamped beam actuated by single/multi-mode excitation. Then, we analytically solve the equations based on the procedure of the Galerkin method with five modes. The simulated results indicate that the MME is clearly superior to that of the SSE, as it can amplify the amplitude performance and signal-to-noise ratio of micro resonators. In the second part, we aim to experimentally prove the concept of the multi-mode excitation and explore its use for gas sensing applications. First, we experimentally investigate the performance of MEMS resonators by single source excitation and multi-mode excitation. We prove the feasibility of the MME approach in enhancing the higher-order mode response for both cantilever and clamped-clamped beams, respectively. We prove that the multi-mode excitation approach provides a better way to activate the higher-order modes with an improved amplitude under a small actuation compared to using a single-source excitation. We then show an improved performance for gas detection. In the third and fourth parts, we propose a technique based on multi-mode excitation for simultaneous sensing for two physical parameters: magnetic field and gas concentration. We respectively investigate a single out-of-plane/in-plane device for in-plane/out-of-plane magnetic field and gas concentration sensing based on tracking the first two vibration modes of a heated buckled micro-beam. We found that operating the resonator at the post-buckling regime, the magnetometer is gas-independent since the first antisymmetric mode (f2) is unaffected by the thermal axial load. Based on it, we utilized the first resonance frequency f1 to detect the gas based on the cooling/heating effects while the second resonance frequency f2 to sense the in-plane/out-of-plane magnetic field. The obtained results demonstrated the sensor acts as a magnetometer and gas sensor, showing good sensitivity, linearity and repeatability. Thus, this technique provides a good candidate for multi-environment monitoring applications. In the last part, we aim to investigate the effects of partial electrodes actuation on the micro resonator and explore its application on the digital-to-analog converter. We analytically and experimentally present modeling, investigation, validation, and optimization of the MEMS resonator-based 3-bit digital to analog converter (DAC) consisting of an in-plane clamped-clamped beam actuated by partial electrodes with different air gaps. The results suggest that the proposed modeling, simulations, and optimization analysis could be successfully implemented in the design of the DAC under various digital combinations. The rich nonlinear behavior with low energy consumption could provide some high potential applications in IoT, such as logic, computation, sensing, and actuation.
27

Optical Waveguides and Integrated Triplexer Filter

Zhao, Lei 06 1900 (has links)
<p> The modeling, design and simulation of optical waveguides and integrated optical triplexer filters are presented. The work includes two subjects. One is application of improved three-point fourth-order finite-difference method and the other is design of triplexer optical filter for fiber-to-the-home passive optical network.</p> <p> The improved three-point fourth-order finite-difference method utilizes special format of one dimensional Helmholtz Equation and adopts generalized Douglas scheme and boundary conditions matching at interface. The modal analysis of dielectric slab waveguides and metal slab waveguides that support Surface Plasmon Plaritons by using this improved fourth-order finite-difference method is compared by using traditional first-order central difference method. The application of using improved three-point fourth-order finite-difference method in modal analysis of optical fiber waveguide is also provided.</p> <p> The modeling, design and simulation of monolithically integrated triplexer optical filter based on silicon wire waveguide are presented in detail. The design of this device facilitates multi-mode interference device (MMI) and arrayed waveguide grating (AWG) device to function as coarse wavelength division multiplexing and dense wavelength division multiplexing respectively. The MMI is used to separate downstream signs for upstream signal and AWG is used to further separate two down-stream signals with different bandwidths required. This design is validated by simulation that shows excellent performance in terms of spectral response as well as insertion loss.</p> / Thesis / Master of Applied Science (MASc)
28

Multi-resonant Electromagnetic Shunt in Base Isolation for Vibration Damping and Energy Harvesting

Pei, Yalu 08 February 2017 (has links)
The objective of this thesis is to develop a dual-functional approach to effectively mitigate the earthquake induced vibrations of low- or mid-rise buildings, and at the same time to efficiently harvest utility-scale energy by using an optimally configured multi-resonant electromagnetic shunt in base isolation. In this research, two multi-resonant shunt configurations, parallel and series, were proposed and optimized based on the H2 criteria when the base isolation system is subjected to ground acceleration excitations. The performance of the proposed multi-resonant electromagnetic shunt was compared with traditional multiple tuned mass dampers (TMDs) applied to the base isolation system. It shows that, for multiple TMDs and multi-resonant electromagnetic shunt dampers with 5% total stiffness ratio, the parallel shunt electromagnetic shunt can achieve the best vibration mitigation performance among other types of multi-resonant dampers, including parallel TMDs, series TMDs and the series electromagnetic shunt damper. Case study of a base-isolated structure was analyzed to investigate the effectiveness of the proposed multi-resonant electromagnetic shunt. It shows that both multi-mode shunt circuits outperform single mode shunt circuit by suppressing the primary and the second vibration modes simultaneously. Comparatively, the parallel shunt circuit is more effective in vibration mitigation and energy harvesting, and is also more robust in parameter mistuning than the series shunt circuit. The time history response analysis shows that, under the recorded Northridge earthquake, the instant peak power and total average power capable to be harvested by the multi-resonant shunt can reach up to 1.18 MW and 203.37KW, respectively. This thesis further experimentally validated the effectiveness of the multi-resonant electromagnetic shunt on a scaled-down base-isolated building. The impact hammer test shows that the multi-resonant electromagnetic shunt can achieve enhanced vibration suppression by reducing the first resonant peak by 27.50dB and the second resonant peak by 22.57dB regarding the primary structure acceleration. The shake table test shows that under scaled Kobe and Northridge earthquake signals, the electromagnetic shunt can effectively reduce the vibration resonant peak value by 38.92% and 66.61%, respectively. The voltage simultaneously generated in the multi-mode shunt circuit was also obtained, which demonstrated the dual functions of the multi-resonant electromagnetic shunt in base isolation. / Master of Science
29

A compact filtering antenna with step and continuous tuning modes for WiMAX cognitive radio communication

Alnahwi, F.M., Abdulhameed, A.A., Ali, N.T., Al-Yasir, Yasir I.A., Kubik, Z., Abdullah, A.S., Abd-Alhameed, Raed 19 December 2023 (has links)
Yes / This work presents a combination of a cup-shaped monopole antenna and an E-shaped Multi-Mode Resonator (MMR) with the presence of a pair of PIN diodes and a varactor diode to form a compact reconfigurable communication filtering antenna for interweave Cognitive Radio (CR) systems. The proposed filtering antenna operates in the WiMAX band, and it is fabricated on an FR4 substrate with overall dimensions normalized to the wavelength ( λ o ) of the first resonant frequency (0.413λ o × 0.516λ o × 0.0165λ o ). The step and continuous tuning serve the secondary user of the WiMAX CR system to communicate in the absence of the primary users at modifiable resonant frequencies and data rates.When the PIN diodes are OFF, the filtering antenna operates with a fixed odd mode resonant frequency and tunable even mode resonant frequency. This state results in a tunable antenna bandwidth covering a maximum measured frequency range of 3.25-4.02~ GHz and a minimum measured range equal to 3.25-3.58~ GHz. The ON state of the PIN diodes eliminates the antenna matching at the even mode resonant frequency while keeping a strong matching at the odd mode resonant frequency. The resulted operational measured frequency range of the antenna in this state is fixed at 2.9-3.28~ GHz. The filtering antenna has acceptable gain values at the pass band of the E-shaped MMR with a maximum simulated gain value equal to 2.5~ dB and a measured maximum gain equal to 2.48~ dB. The simulated and measured power patterns of the antenna for all diodes states are omnidirectional, which are convenient for portable CR gadgets. / This work was supported in part by the Innovation Programme under Grant H2020-MSCA-ITN-2016 SECRET-722424, and in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/E022936/1.
30

Régulation adaptative multi-objectif et multi-mode aux carrefours à feux / Multi-objective and multi-mode adaptive traffic control on signal-controlled junctions

Dujardin, Yann 24 June 2013 (has links)
Afin de répondre à la problématique de la régulation multi-objectif et multi-mode des carrefours à feux, nous proposons trois modèles de programmation linéaire mixte en nombres entiers constituant les moteurs d'un système de régulation pleinement adaptatif, ainsi que deux procédures interactives d'optimisation multi-objectif permettant d'adapter itérativement une “politique de régulation” à la situation de trafic. Les critères pris en compte, tous à minimiser, sont le temps d'attente et le nombre d'arrêts des véhicules particuliers, et un critère dédié aux transports en commun permettant de fixer un temps d'attente souhaité pour chaque bus. Des expérimentations ont montré qu'un des trois modèles, dit hybride, se démarque positivement des deux autres. Ce modèle a alors été mis en œuvre avec une des deux procédures interactives, permettant de contrôler un trafic simulé sur une période d'une heure dans différents scénarios types, et comparé à un système de régulation semi-adaptatif. / In order to answer the multi-objective and multi-mode adaptive traffic control problem, we propose three models of mixed integer linear programming, usable with two multi-objective optimization interactive methods, allowing to adapt a “traffic control policy” iteratively to the current traffic situation. The considered criteria, all of them to be minimized, are the total waiting time and the number of stops for private vehicles and a criterion dedicated to public transports allowing to set a target waiting time for every bus. Experiments showed that one of the three models, called hybrid model, distinguishes itself positively from the others. This model was implemented with one of the two interactive methods, allowing to control a traffic simulated over one hour in different scenarios, and was compared to a semi-adaptive traffic control system.

Page generated in 0.0543 seconds