• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of a Telemetry Signal Simulator

O’Cull, Douglas 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / This paper will discuss the use of a specialized telemetry signal simulator for pre-mission verification of a telemetry receiving system. This will include how to configure tests that will determine system performance under “real time” conditions such as multipath fading and Doppler shifting. The paper will analyze a telemetry receiving system and define tests for each part of the system. This will include tests for verification of the antenna system. Also included, will be tests for verification of the receiver/combiner system. The paper will further discuss how adding PCM simulation capabilities to the signal simulator will allow testing of frame synchronizers and decomutation equipment.
2

Block-Based Equalization Using Nonorthogonal Projector with Bayesian Decision Feedback Equalizer for CP-OFDM Systems

Hsieh, Chih-nung 07 August 2006 (has links)
All digital communication channels are subject to inter-symbol interference (ISI). To achieve the desired system performance, at receiver end, the effect of ISI must be compensated and the task of the equalizer is to combat the degrading effects of ISI on the transmission. Due to the demand of high data transmission rate, the multicarrier modulation (MCM) technique implemented with the orthogonal frequency division multiplexing (OFDM) has been adopted in many modern communications systems for block transmission. In block transmission systems, transmitter-included redundancy using finite-impulse response (FIR) filterbanks can be utilized to suppress inter-block-interference (IBI). However, the length of redundancy will affect the system performance, which is highly dependent on the length of channel impulse response. To deal with the effect of ISI, many equalizing schemes have been proposed, among them the FIR zero-forcing (ZF) equalizer with the non-orthogonal projector provides a useful transceiver design structure for suppressing the IBI and ISI, simultaneously. In this thesis, we propose a new equalizing scheme; it combines the FIR-ZF equalizer with non-orthogonal projector as well as the Bayesian decision feedback equalizer (DFE) for IBI and ISI suppression. The Bayesian DFE is known to be one of the best schemes to achieve the desired performance for eliminating ISI. It can be employed to achieve the full potential of symbol-by-symbol equalizer. That is, after removing the effect of IBI with the non-orthogonal projector, the Bayesian DFE is employed for eliminating the ISI, simultaneously. For comparison, the system performance, in term of bit error rate (BER) is investigated, and compared with the minimum mean square error (MMSE)-IBI-DFE. The advantage of the new proposed equalizing scheme is verified via computer simulation under condition of insufficient redundancy.
3

Enhancing Secrecy via Exploring Randomness in the Wireless Physical Layer

Talat, Rehan 01 January 2013 (has links) (PDF)
In order to establish a secure connections in the wireless environment, cryptographic methods may require an exchange of a key or secret. Fortunately, the environment provides randomness due to multi-path fading that can be exploited by physical-layer security algorithms to help establish this shared secret. However, in some cases, multi-path fading might be absent or negligible; therefore, we look for artificial ways to increase randomness. In this thesis, we explore antenna radiation variation by altering the phase between two antennas as a means of creating artificial fading. We construct a model of the antenna gain variation by analyzing the radiation pattern and run Monte-Carlo simulations to compare our approach to a base case with only multi-path fading. We then empirically collect data in order to confirm our analysis. Finally, we incorporate this model in a prominent security algorithm to demonstrate the improvements in security possible through such an approach.

Page generated in 0.0726 seconds