Spelling suggestions: "subject:"multirobot lemsystems"" "subject:"multirobot atemsystems""
41 |
Coordinated search with unmanned aerial vehicle teamsWard, Paul A. January 2013 (has links)
Advances in mobile robot technology allow an increasing variety of applications to be imagined, including: search and rescue, exploration of unknown areas and working with hazardous materials. State of the art robots are able to behave autonomously and without direct human control, using on-board devices to perceive, navigate and reason about the world. Unmanned Aerial Vehicles (UAVs) are particularly well suited to performing advanced sensing tasks by moving rapidly through the environment irrespective of the terrain. Deploying groups of mobile robots offers advantages, such as robustness to individual failures and a reduction in task completion time. However, to operate efficiently these teams require specific approaches to enable the individual agents to cooperate. This thesis proposes coordinated approaches to search scenarios for teams of UAVs. The primary application considered is Wilderness Search and Rescue (WiSaR), although the techniques developed are applicable elsewhere. A novel frontier-based search approach is developed for rotor-craft UAVs, taking advantage of available terrain information to minimise altitude changes during flight. This is accompanied by a lightweight coordination mechanism to enable cooperative behaviour with minimal additional overhead. The concept of a team rendezvous is introduced, at which all team members attend to exchange data. This also provides an ideal opportunity to create a comprehensive team solution to relay newly gathered data to a base station. Furthermore, the delay between sensing and the acquired data becoming available to mission commanders is analysed and a technique proposed for adapting the team to meet a latency requirement. These approaches are evaluated and characterised experimentally through simulation. Coordinated frontier search is shown to outperform greedy walk methods, reducing redundant sensing coverage using only a minimal coordination protocol. Combining the search, rendezvous and relay techniques provides a holistic approach to the deployment of UAV teams, meeting mission objectives without extensive pre-configuration.
|
42 |
Multi-Robot Task Allocation and Scheduling with Spatio-Temporal and Energy ConstraintsDutia, Dharini 24 April 2019 (has links)
Autonomy in multi-robot systems is bounded by coordination among its agents. Coordination implies simultaneous task decomposition, task allocation, team formation, task scheduling and routing; collectively termed as task planning. In many real-world applications of multi-robot systems such as commercial cleaning, delivery systems, warehousing and inventory management: spatial & temporal constraints, variable execution time, and energy limitations need to be integrated into the planning module. Spatial constraints comprise of the location of the tasks, their reachability, and the structure of the environment; temporal constraints express task completion deadlines. There has been significant research in multi-robot task allocation involving spatio-temporal constraints. However, limited attention has been paid to combine them with team formation and non- instantaneous task execution time. We achieve team formation by including quota constraints which ensure to schedule the number of robots required to perform the task. We introduce and integrate task activation (time) windows with the team effort of multiple robots in performing tasks for a given duration. Additionally, while visiting tasks in space, energy budget affects the robots operation time. We map energy depletion as a function of time to ensure long-term operation by periodically visiting recharging stations. Research on task planning approaches which combines all these conditions is still lacking. In this thesis, we propose two variants of Team Orienteering Problem with task activation windows and limited energy budget to formulate the simultaneous task allocation and scheduling as an optimization problem. A complete mixed integer linear programming (MILP) formulation for both variants is presented in this work, implemented using Gurobi Optimizer and analyzed for scalability. This work compares the different objectives of the formulation like maximizing the number of tasks visited, minimizing the total distance travelled, and/or maximizing the reward, to suit various applications. Finally, analysis of optimal solutions discover trends in task selection based on the travel cost, task completion rewards, robot's energy level, and the time left to task inactivation.
|
43 |
Localisation markovienne de systèmes mono-robot et multi-robots utilisant des échantillons auto-adaptatifs / Self-adaptive Markov localization for single-robot and multi-robot systemsZhang, Lei 15 January 2010 (has links)
Afin de parvenir à l'autonomie des robots mobiles, la localisation efficace est une condition préalable nécessaire. Le suivi de position, la localisation globale et le problème du robot kidnappé sont les trois sous-problèmes que nous étudions. Dans cette thèse, nous comparons en simulation trois algorithmes de localisation Markovienne. Nous proposons ensuite une amélioration de l'algorithme de localisation de Monte Carlo par filtre particulaire. Cet algorithme (nommé SAMCL) utilise des particules auto-adaptatives. En employant une technique de pré-mise en cache pour réduire le temps de calcul en ligne, l'algorithme SAMCL est plus efficace que la méthode de Monte Carlo usuelle. En outre, nous définissons la notion de région d'énergie similaire (SER), qui est un ensemble de poses (cellules de la grille) dont l'énergie-capteur est similaire avec celle du robot dans l'espace réel. En distribuant les échantillons globaux dans SER lieu de les distribuer au hasard dans la carte, SAMCL obtient une meilleure performance dans la localisation et résout ces trois sous-problèmes. La localisation coopérative de plusieurs robots est également étudiée. Nous avons développé un algorithme (nommé PM) pour intégrer l'information de localisation échangée par les robots lors d'une rencontre au cours d'une mission commune. Cet algorithme apparaît comme une extension à l'algorithme de SAMCL et a été validé en simulation. La validité et l'efficacité de notre approche sont démontrées par des expériences sur un robot réel évoluant dans un environnement connu et préalablement cartographié. / In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this thesis, we study and compare three regular Markov localization algorithms by simulations. Then we propose an improved Monte Carlo localization algorithm using self-adaptive samples, abbreviated as SAMCL. By employing a pre-caching technique to reduce the on-line computational burden, SAMCL is more efficient than regular MCL. Further, we define the concept of similar energy region (SER), which is a set of poses (grid cells) having similar energy with the robot in the robot space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL obtains a better performance in localization. Position tracking, global localization and the kidnapped robot problem are the three sub-problems of the localization problem. Most localization approaches focus on solving one of these sub-problems. However, SAMCL solves all the three sub-problems together thanks to self-adaptive samples that can automatically separate themselves into a global sample set and a local sample set according to needs. Cooperative localization among multiple robots is carried out by exchanging localization information derived from cooperation. We devise the Position Mapping (PM) algorithm to integrate this information, which can merge into the SAMCL algorithm as an extension. The validity and the efficiency of our algorithms are demonstrated by experiments carried out with a real robot in a structured and known environment.
|
44 |
Estratégias inteligentes aplicadas em robôs móveis autônomos e em coordenação de grupos de robôs / Intelligent strategies applied to autonomous mobile robots and groups of robotsPessin, Gustavo 05 April 2013 (has links)
O contínuo aumento da complexidade no controle de sistemas robóticos, bem como a aplicação de grupos de robôs auxiliando ou substituindo seres humanos em atividades críticas tem gerado uma importante demanda por soluções mais robustas, flexíveis, e eficientes. O desenvolvimento convencional de algoritmos especializados, constituídos de sistemas baseados em regras e de autômatos usados para coordenar estes conjuntos físicos em um ambiente dinâmico é um desafio extremamente complexo. Diversos modelos de desenvolvimento existem, entretanto, muitos desafios da área da robótica móvel autônoma continuam em aberto. Esta tese se insere no contexto da busca por soluções inteligentes a serem aplicadas em robôs móveis autônomos com o objetivo de permitir a operação destes em ambientes dinâmicos. Buscamos, com a investigação e aplicação de estratégias inteligentes por meio de aprendizado de máquina no funcionamento dos robôs, a proposta de soluções originais que permitam uma nova visão sobre a operação de robôs móveis em três dos desafios da área da robótica móvel autônoma, que são: localização, navegação e operações com grupos de robôs. As pesquisas sobre localização e coordenação de grupos apresentam investigação e propostas originais, buscando estender o estado da arte, onde apresentam resultados inovadores. A parte sobre navegação tem como objetivo principal ser um elo entre os conceitos de localização e coordenação de grupos, sendo o foco o desenvolvimento de um veículo autônomo com maior implicação em avanços técnicos. Relacionado com a coordenação de grupos de robôs, fizemos a escolha de trabalhar sobre uma aplicação modelada como o problema de combate a incêndios florestais. Buscamos desenvolver um ambiente de simulação realístico, onde foram avaliadas quatro técnicas para busca de iii estratégias de formação do grupo: Algoritmos Genéticos, Otimização por Enxame de Partículas, Hill Climbing e (iv) Simulated Annealing. Com base nas diversas avaliações realizadas pudemos mostrar quais das técnicas e conjuntos de parâmetros permitem a obtenção de resultados mais acurados que os demais. Além disso, mostramos como uma heurística baseada em populações anteriores pode auxiliar na tolerância a falhas da operação. Relacionado com a tarefa de navegação, apresentamos o desenvolvimento de um veículo autônomo de grande porte funcional para ambientes externos. Buscamos aperfeiçoar uma arquitetura para navegação autônoma, baseada em visão monocular e com capacidade de seguir pontos esparsos de GPS. Mostramos como a simulação e os usos de robôs de pequeno porte auxiliaram no desenvolvimento do veículo de grande porte e apresentamos como as redes neurais podem ser aplicadas nos modelos de navegação autônoma. Na investigação sobre localização, mostramos um método utilizando informação obtida de redes sem fio para prover informação de localização para robôs móveis. As informações obtidas da rede sem fio são utilizadas para aprendizado da posição de um robô móvel por meio de uma rede neural. Diversas avaliações foram realizadas buscando entender o comportamento do sistema com diferentes números de pontos de acesso, com uso de filtros, com diferentes topologias. Os resultados mostram que o modelo usando redes sem fio pode ser um possível método prático e barato para localização de robôs móveis. Esta tese aborda temas relevantes e propostas originais relacionadas com os objetivos propostos, apresentando métodos que provenham autonomia na coordenação de grupos e nas atividades individuais dos mesmos. A busca por altos graus de eficiência na resolução de tarefas em ambientes dinâmicos ainda é um campo que carece de soluções e de um aprofundamento nas pesquisas. Sendo assim, esta pesquisa buscou agregar diversos avanços científicos na área de pesquisa de robôs móveis autônomos e coordenação de grupos, por meio da aplicação de estratégias inteligentes / The constant increasing of the complexity in the control of robotic systems, as well as the application of groups of robots assisting or replacing human beings in critical activities has generated a significant demand for more robust, flexible and efficient solutions. The conventional development of specialized algorithms consisted of rule-based systems and automatas, used to coordinate these physical sets in a dynamic environment is an extremely complex challenge. Although several models of development of robotic issues are currently in use, many challenges in the area remain open. This thesis is related to the search for intelligent strategies to be applied in autonomous mobile robots in order to allow practical operations in dynamic environments. We seek, with the investigation of intelligent strategies by means of the use of machine learning in the robots, to propose original solutions to allow contributions in three challenges of the robotic research area: localization, navigation and coordination of groups of robots. The investigations about localization and groups of robots show novel and original proposals, where we sought to extend the state of the art. The navigation part has as its major objective to be a link between the subjects of localization and navigation, being its aim to help the deployment of a autonomous vehicle implying in greater technical advances. Related to the robotic group coordination, we have made the choice to work on an application modeled as a wildfire combat operation. We have developed a simulation environment in which we have evaluated four techniques to obtain strategies for the group formation: genetic algorithms, particle swarm optimization, hill climbing and simulated annealing. The v results showed that we can have very different accuracy with different techniques and sets of parameters. Furthermore, we show how a heuristic based on the use of past populations can assist in fault tolerant operation. Related to the autonomous navigation task, we present the development of a large autonomous vehicle capable of operating in outdoor environments. We sought to optimize an architecture for autonomous navigation based on monocular vision and with the ability to follow scattered points of GPS.We show how the use of simulation and small robots could assist in the development of large vehicle. Furthermore, we show how neural networks can be applied as a controller to autonomous navigation systems. In the investigation about localization, we presented a method using wireless networks to provide information about localization to mobile robots. The information gathered by the wireless network is used as input in an artificial neural network which learns the position of the robot. Several evaluations were carried out in order to understand the behavior of the proposed system, as using different topologies, different numbers of access points and the use of filters. Results showed that the proposed system, using wireless networks and neural networks, may be a useful and easy to use solution for localization of mobile robots. This thesis has addressed original and relevant topics related to the proposed objectives, showing methods to allow degrees of autonomy in robotic operations. The search for higher degrees of efficiency in tasks solving in dynamic environments is still a field that lacks solutions. Therefore, this study sought to add several scientific contributions in the autonomous mobile robots research area and coordination of groups, by means of the application of intelligent strategies
|
45 |
Automatic coordination and deployment of multi-robot systemsSmith, Brian Stephen 31 March 2009 (has links)
We present automatic tools for configuring and deploying multi-robot networks of decentralized, mobile robots. These methods are tailored to the decentralized nature of the multi-robot network and the limited information available to each robot. We present methods for determining if user-defined network tasks are feasible or infeasible for the network, considering the limited range of its sensors. To this end, we define rigid and persistent feasibility and present necessary and sufficient conditions (along with corresponding algorithms) for determining the feasibility of arbitrary, user-defined deployments. Control laws for moving multi-robot networks in acyclic, persistent formations are defined. We also present novel Embedded Graph Grammar Systems (EGGs) for coordinating and deploying the network. These methods exploit graph representations of the network, as well as graph-based rules that dictate how robots coordinate their control. Automatic systems are defined that allow the robots to assemble arbitrary, user-defined formations without any reliance on localization. Further, this system is augmented to deploy these formations at the user-defined, global location in the environment, despite limited localization of the network. The culmination of this research is an intuitive software program with a Graphical User Interface (GUI) and a satellite image map which allows users to enter the desired locations of sensors. The automatic tools presented here automatically configure an actual multi-robot network to deploy and execute user-defined network tasks.
|
46 |
Um Ambiente para Simulação e Testes de Comunicação entre Multi-Robôs através de CossimulaçãoOliveira, Thiago José Silva 26 February 2016 (has links)
Submitted by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-21T13:50:24Z
No. of bitstreams: 1
arquivototal.pdf: 2220137 bytes, checksum: 5d830e5d1ba6396c3e9ff56a19b08deb (MD5) / Made available in DSpace on 2017-08-21T13:50:24Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2220137 bytes, checksum: 5d830e5d1ba6396c3e9ff56a19b08deb (MD5)
Previous issue date: 2016-02-26 / Multi-Robot System (MRS) consisting of multiple interacting robots, each running a specific control strategy, which is not driven centrally. Technical challenges arise from the need to develop complex, software-intensive products that take the constraints of the physical world into account. Make tools, methodologies and teams from different fields can work together is not an easy task to accomplish. Co-simulation represents on technique of validation in heterogeneous systems. Its fundamental principle is to provide support to execute different simulators in a cooperative way. A known standard is the High Level Architecture (HLA) that is a pattern described in IEEE 1516 series and has been developed to provide a common architecture to distributed model and simulation. Using HLA, several simulators and real applications could be simulated together. That way, this work presents a project for Multi-Robot Systems (SMR) simulation using ROS co-simulation with a network simulator, the OMNeT++, using HLA. The main goal is make the simulations more realistic, where the data exchange will be performed by using a simulated network, as if we had real robots interacting through a conventional network. To this end, an interface was developed between ROS and OMNeT++ using HLA. Experiments demonstrate that the packet losses were correctly simulated, adding realism to simulations. / Sistemas Multi-Robôs (SMR) consistem em múltiplos robôs interagindo, cada um executando uma estratégia de controle específica, que não é conduzida de forma centralizada. Alguns desafios surgiram da necessidade de desenvolver produtos que levem o mundo real em consideração. Fazer com que ferramentas, metodologias e equipes de diferentes áreas possam trabalhar juntas não é uma tarefa simples de ser realizada. Cossimulação representa uma técnica para validação de sistemas heterogêneos. Seu princípio fundamental é prover suporte à execução de diferentes simuladores de forma cooperativa. Um dos padrões para tal é conhecido como High Level Architecture (HLA), que é um padrão descrito no IEEE 1516 e tem sido desenvolvido para dispor uma arquitetura para modelagem e simulação distribuídos. Utilizando HLA, vários simuladores e aplicações reais podem ser simulados juntos. Sendo assim, este trabalho apresenta um projeto para simulação de Sistemas Multi-Robôs (SMR) utilizando ROS cossimulado com um simulador de redes de computadores, o OMNeT++ através do HLA. Seu principal objetivo é tornar as simulações mais próximas da realidade, onde os dados irão ser trocados através de uma rede simulada, como se tivéssemos robôs reais interagindo através de uma rede convencional. Para tal, foi desenvolvida a interface entre o ambiente ROS e o OMNeT++ com o HLA. Experimentos demonstraram que a perda de pacotes foi simulada corretamente, adicionando ao ambiente mais realismo
|
47 |
Estratégias inteligentes aplicadas em robôs móveis autônomos e em coordenação de grupos de robôs / Intelligent strategies applied to autonomous mobile robots and groups of robotsGustavo Pessin 05 April 2013 (has links)
O contínuo aumento da complexidade no controle de sistemas robóticos, bem como a aplicação de grupos de robôs auxiliando ou substituindo seres humanos em atividades críticas tem gerado uma importante demanda por soluções mais robustas, flexíveis, e eficientes. O desenvolvimento convencional de algoritmos especializados, constituídos de sistemas baseados em regras e de autômatos usados para coordenar estes conjuntos físicos em um ambiente dinâmico é um desafio extremamente complexo. Diversos modelos de desenvolvimento existem, entretanto, muitos desafios da área da robótica móvel autônoma continuam em aberto. Esta tese se insere no contexto da busca por soluções inteligentes a serem aplicadas em robôs móveis autônomos com o objetivo de permitir a operação destes em ambientes dinâmicos. Buscamos, com a investigação e aplicação de estratégias inteligentes por meio de aprendizado de máquina no funcionamento dos robôs, a proposta de soluções originais que permitam uma nova visão sobre a operação de robôs móveis em três dos desafios da área da robótica móvel autônoma, que são: localização, navegação e operações com grupos de robôs. As pesquisas sobre localização e coordenação de grupos apresentam investigação e propostas originais, buscando estender o estado da arte, onde apresentam resultados inovadores. A parte sobre navegação tem como objetivo principal ser um elo entre os conceitos de localização e coordenação de grupos, sendo o foco o desenvolvimento de um veículo autônomo com maior implicação em avanços técnicos. Relacionado com a coordenação de grupos de robôs, fizemos a escolha de trabalhar sobre uma aplicação modelada como o problema de combate a incêndios florestais. Buscamos desenvolver um ambiente de simulação realístico, onde foram avaliadas quatro técnicas para busca de iii estratégias de formação do grupo: Algoritmos Genéticos, Otimização por Enxame de Partículas, Hill Climbing e (iv) Simulated Annealing. Com base nas diversas avaliações realizadas pudemos mostrar quais das técnicas e conjuntos de parâmetros permitem a obtenção de resultados mais acurados que os demais. Além disso, mostramos como uma heurística baseada em populações anteriores pode auxiliar na tolerância a falhas da operação. Relacionado com a tarefa de navegação, apresentamos o desenvolvimento de um veículo autônomo de grande porte funcional para ambientes externos. Buscamos aperfeiçoar uma arquitetura para navegação autônoma, baseada em visão monocular e com capacidade de seguir pontos esparsos de GPS. Mostramos como a simulação e os usos de robôs de pequeno porte auxiliaram no desenvolvimento do veículo de grande porte e apresentamos como as redes neurais podem ser aplicadas nos modelos de navegação autônoma. Na investigação sobre localização, mostramos um método utilizando informação obtida de redes sem fio para prover informação de localização para robôs móveis. As informações obtidas da rede sem fio são utilizadas para aprendizado da posição de um robô móvel por meio de uma rede neural. Diversas avaliações foram realizadas buscando entender o comportamento do sistema com diferentes números de pontos de acesso, com uso de filtros, com diferentes topologias. Os resultados mostram que o modelo usando redes sem fio pode ser um possível método prático e barato para localização de robôs móveis. Esta tese aborda temas relevantes e propostas originais relacionadas com os objetivos propostos, apresentando métodos que provenham autonomia na coordenação de grupos e nas atividades individuais dos mesmos. A busca por altos graus de eficiência na resolução de tarefas em ambientes dinâmicos ainda é um campo que carece de soluções e de um aprofundamento nas pesquisas. Sendo assim, esta pesquisa buscou agregar diversos avanços científicos na área de pesquisa de robôs móveis autônomos e coordenação de grupos, por meio da aplicação de estratégias inteligentes / The constant increasing of the complexity in the control of robotic systems, as well as the application of groups of robots assisting or replacing human beings in critical activities has generated a significant demand for more robust, flexible and efficient solutions. The conventional development of specialized algorithms consisted of rule-based systems and automatas, used to coordinate these physical sets in a dynamic environment is an extremely complex challenge. Although several models of development of robotic issues are currently in use, many challenges in the area remain open. This thesis is related to the search for intelligent strategies to be applied in autonomous mobile robots in order to allow practical operations in dynamic environments. We seek, with the investigation of intelligent strategies by means of the use of machine learning in the robots, to propose original solutions to allow contributions in three challenges of the robotic research area: localization, navigation and coordination of groups of robots. The investigations about localization and groups of robots show novel and original proposals, where we sought to extend the state of the art. The navigation part has as its major objective to be a link between the subjects of localization and navigation, being its aim to help the deployment of a autonomous vehicle implying in greater technical advances. Related to the robotic group coordination, we have made the choice to work on an application modeled as a wildfire combat operation. We have developed a simulation environment in which we have evaluated four techniques to obtain strategies for the group formation: genetic algorithms, particle swarm optimization, hill climbing and simulated annealing. The v results showed that we can have very different accuracy with different techniques and sets of parameters. Furthermore, we show how a heuristic based on the use of past populations can assist in fault tolerant operation. Related to the autonomous navigation task, we present the development of a large autonomous vehicle capable of operating in outdoor environments. We sought to optimize an architecture for autonomous navigation based on monocular vision and with the ability to follow scattered points of GPS.We show how the use of simulation and small robots could assist in the development of large vehicle. Furthermore, we show how neural networks can be applied as a controller to autonomous navigation systems. In the investigation about localization, we presented a method using wireless networks to provide information about localization to mobile robots. The information gathered by the wireless network is used as input in an artificial neural network which learns the position of the robot. Several evaluations were carried out in order to understand the behavior of the proposed system, as using different topologies, different numbers of access points and the use of filters. Results showed that the proposed system, using wireless networks and neural networks, may be a useful and easy to use solution for localization of mobile robots. This thesis has addressed original and relevant topics related to the proposed objectives, showing methods to allow degrees of autonomy in robotic operations. The search for higher degrees of efficiency in tasks solving in dynamic environments is still a field that lacks solutions. Therefore, this study sought to add several scientific contributions in the autonomous mobile robots research area and coordination of groups, by means of the application of intelligent strategies
|
48 |
Técnicas de otimização para controle e operação de máquinas inteligentesSouza, Marina Borges Arantes de 28 August 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-08T11:00:22Z
No. of bitstreams: 1
marinaborgesarantesdesouza.pdf: 4073445 bytes, checksum: 18982e159219bb019d11c3f3604e9f38 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-22T15:25:04Z (GMT) No. of bitstreams: 1
marinaborgesarantesdesouza.pdf: 4073445 bytes, checksum: 18982e159219bb019d11c3f3604e9f38 (MD5) / Made available in DSpace on 2018-01-22T15:25:04Z (GMT). No. of bitstreams: 1
marinaborgesarantesdesouza.pdf: 4073445 bytes, checksum: 18982e159219bb019d11c3f3604e9f38 (MD5)
Previous issue date: 2017-08-28 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Levando em conta a crescente utilização de sistemas robóticos em várias situações da atualidade, métodos que coordenam as atividades dos robôs são essenciais para se obter movimentos sincronizados e livres de possibilidades de colisão. Uma forma de coordená-los é através de métodos de otimização. O presente trabalho enfoca uma abordagem baseada em Programação Não Linear para encontrar perfis de velocidade ótimos para robôs com caminhos previamente especificados. A metodologia é aplicada em modelos de robôs móveis e manipuladores robóticos. Apesar das diferenças construtivas, de forma geral e para fins de coordenação, é permitido compartilhar, para os dois casos, a mesma formulação de otimização, fundamentada na maximização do quadrado da diferença de tempo em que os robôs atingem um mesmo ponto de colisão. Não obstante o grande número de trabalhos encontrados na literatura que envolvem o assunto, abordagens relacionadas a uma modelagem não linear do problema são escassas. A vantagem do método encontra-se na facilidade de representar não linearidades do sistema, como limitações de velocidade, aceleração e torque dos robôs. Além disso, a complexidade de formulação e resolução é reduzida em comparação com outros métodos que envolvem o tratamento de variáveis inteiras. O método também engloba situações em que os robôs podem se colidir na forma de segmentos. Para tanto, determina-se uma abordagem baseada na inclusão de pontos fictícios para representar tais trechos. Os testes foram realizados em diferentes sistemas de robôs móveis e manipuladores e os resultados comprovaram a eficiência da metodologia proposta, encontrando perfis de velocidade ótimos que determinam trajetórias sem acidentes. Comparações com Programação Linear Inteira Mista, amplamente utilizada para esse fim, comprovaram a superioridade da técnica apresentada, com relação à complexidade e modelagem de não linearidades, aproximando o modelo a sistemas reais. / The use of robotic systems in various industrial and logistics situations is increasing. Methods that coordinate the activities of the robots are essential to obtain synchronized and free of collision possibilities movements. One manner to coordinate them is through optimization methods. This work focuses on an approach based on Nonlinear Programming to determine optimal velocity profiles of robots with previously specified paths. The methodology is applied to mobile robots and manipulators models. Despite the constructive differences, in general, the same optimization formulation can be shared for both cases. The arrangement is based on the maximization of the square of the time difference in which the robots reach the same point of collision. Notwithstanding a large number of papers found in the literature involving the subject, approaches related to a nonlinear modeling of the problem are scarce. The advantage of the method lies in the easiness of representing nonlinearities of the system, such as speed, acceleration and torque limitations of robots. In addition, the formulation and resolution complexity is reduced compared to other methods encompassing the processing of integer variables. The method also encompasses situations where robots may collide in the form of segments. In this sense, an approach based on the inclusion of fictitious points to represent such stretches is determined. The tests were realized in different mobile robot and manipulators systems. The results proved the efficiency of the proposed methodology, finding optimal speed profiles that determine trajectories without accidents. Comparisons with Mixed Integer Linear Programming, widely used for this purpose, proved the superiority of the proposed technique with respect to the complexity and modeling of nonlinearities, bringing the model closer to real systems.
|
49 |
Priority-based coordination of mobile robots / Coordination de robots mobiles par affectation de prioritésGregoire, Jean 29 September 2014 (has links)
Depuis la fin des années 1980, le développement de véhicules autonomes, capables de rouler sans l'intervention d'un être humain, est un champ de recherche très actif dans la plupart des grands pays industrialisés. La diminution du nombre d'accidents, des temps de trajet plus courts, une meilleure efficacité énergétique et des besoins en infrastructure plus limités, sont autant d'effets socio-économiques espérés de leur déploiement. Des formes de coopération inter-véhicules et entre les véhicules et l'infrastructure routière sont nécessaires au fonctionnement sûr et efficace du système de transport dans sa globalité. Cette thèse s'intéresse à une forme de coopération particulière en étudiant la coordination de robots mobiles aux intersections. La majorité des systèmes de coordination existants planifie une trajectoire que les robots doivent exécuter afin d'assurer l'absence de collision. C'est une approche classique de la planification, qui est alors considérée comme un mécanisme de génération de l'action. Dans cette thèse, seules les priorités entre les véhicules sont planifiées, c'est-à-dire l'ordre relatif de passage des véhicules dans l'intersection, ce qui est bien plus faible car un grand nombre de trajectoires respectent les même priorités. Les priorités sont alors simplement utilisées comme une ressource de coordination pour guider les robots dans l'intersection. Une fois les priorités affectées, les robots suivent une loi de contrôle qui s'assure qu'elles soient bien respectées. Il en découle un système de coordination robuste, capable de gérer toute une classe d'événements imprévisibles de façon réactive, ce qui est particulièrement adapté pour une application à la coordination de véhicules autonomes aux intersections où voitures, transports en commun et piétons partagent la route. / Since the end of the 1980's, the development of self-driven autonomous vehicles is an intensive research area in most major industrial countries. Positive socio-economic potential impacts include a decrease of crashes, a reduction of travel times, energy efficiency improvements, and a reduced need of costly physical infrastructure. Some form of vehicle-to-vehicle and/or vehicle-to-infrastructure cooperation is required to ensure a safe and efficient global transportation system. This thesis deals with a particular form of cooperation by studying the problem of coordinating multiple mobile robots at an intersection area. Most of coordination systems proposed in previous work consist of planning a trajectory and to control the robots along the planned trajectory: that is the plan-as-program paradigm where planning is considered as a generative mechanism of action. The approach of the thesis is to plan priorities – the relative order of robots to go through the intersection – which is much weaker as many trajectories respect the same priorities. Then, priorities are merely used as a coordination resource to guide robots through the intersection. Once priorities are assigned, robots are controlled through a control law preserving the assigned priorities. It results in a more robust coordination system – able to handle a large class of unexpected events in a reactive manner – particularly well adapted for an application to the coordination of autonomous vehicles at intersections where cars, public transport and pedestrians share the road.
|
50 |
Social Behavior based Collaborative Self-organization in Multi-robot SystemsTamzidul Mina (9755873) 14 December 2020 (has links)
<div>Self-organization in a multi-robot system is a spontaneous process where some form of overall order arises from local interactions between robots in an initially disordered system. Cooperative coordination strategies for self-organization promote teamwork to complete a task while increasing the total utility of the system. In this dissertation, we apply prosocial behavioral concepts such as altruism and cooperation in multi-robot systems and investigate their effects on overall system performance on given tasks. We stress the significance of this research in long-term applications involving minimal to no human supervision, where self-sustainability of the multi-robot group is of utmost importance for the success of the mission at hand and system re-usability in the future.</div><div><br></div><div>For part of the research, we take bio-inspiration of cooperation from the huddling behavior of Emperor Penguins in the Antarctic which allows them to share body heat and survive one of the harshest environments on Earth as a group. A cyclic energy sharing concept is proposed for a convoying structured multi-robot group inspired from penguin movement dynamics in a huddle with carefully placed induction coils to facilitate directional energy sharing with neighbors and a position shuffling algorithm, allowing long-term survival of the convoy as a group in the field. Simulation results validate that the cyclic process allows individuals an equal opportunity to be at the center of the group identified as the most energy conserving position, and as a result robot groups were able to travel over 4 times the distance during convoying with the proposed method without any robot failing as opposed to without the shuffling and energy sharing process. </div><div><br></div><div>An artificial potential based Adaptive Inter-agent Spacing (AIS) control law is also proposed for efficient energy distribution in an unstructured multi-robot group aimed at long-term survivability goals in the field. By design, as an altruistic behavior higher energy bearing robots are dispersed throughout the group based on their individual energy levels to counter skewed initial distributions for faster group energy equilibrium attainment. Inspired by multi-huddle merging and splitting behavior of Emperor Penguins, a clustering and sequential merging based systematic energy equilibrium attainment method is also proposed as a supplement to the AIS controller. The proposed system ensures that high energy bearing agents are not over crowded by low energy bearing agents. The AIS controller proposed for the unstructured energy sharing and distribution process yielded 55%, 42%, 23% and 33% performance improvements in equilibrium attainment convergence time for skewed, bi-modal, normal and random initial agent resource level distributions respectively on a 2D plane using the proposed energy distribution method over the control method of no adaptive spacing. Scalability analysis for both energy sharing concepts confirmed their application with consistently improved performances different sized groups of robots. Applicability of the AIS controller as a generalized resource distribution method under certain constraints is also discussed to establish its significance in various multi-robot applications.</div><div><br></div><div>A concept of group based survival from damaging directional external stimuli is also adapted from the Emperor Penguin huddling phenomenon where individuals on the damaging stimuli side continuously relocate to the leeward side of the group following the group boundary using Gaussian Processes Machine Learning based global health-loss rate minima estimations in a distributed manner. The method relies on cooperation from all robots where individuals take turns being sheltered by the group from the damaging external stimuli. The distributed global health loss rate minima estimation allowed the development of two settling conditions. The global health loss rate minima settling method yielded 12.6%, 5.3%, 16.7% and 14.2% improvement in average robot health over the control case of no relocation, while an optimized health loss rate minima settling method further improved on the global health loss rate settling method by 3.9%, 1.9%, 1.7% and 0.6% for robot group sizes 26, 35, 70 and 107 respectively.</div><div><br></div><div>As a direct application case study of collaboration in multi-robot systems, a distributed shape formation strategy is proposed where robots act as beacons to help neighbors settle in a prescribed formation by local signaling. The process is completely distributed in nature and does not require any external control due to the cooperation between robots. Beacon robots looking for a robot to settle as a neighbor and continue the shape formation process, generates a surface gradient throughout the formed shape that allow robots to determine the direction of the structure forming frontier along the dynamically changing structure surface and eventually reach the closest beacon. Simulation experiments validate complex shape formation in 2D and 3D using the proposed method. The importance of group collaboration is emphasized in this case study without which the shape formation process would not be possible, without a centralized control scheme directing individual agents to specific positions in the structure. </div><div> </div><div>As the final application case study, a collaborative multi-agent transportation strategy is proposed for unknown objects with irregular shape and uneven weight distribution. Although, the proposed system is robust to single robot object transportation, the proposed methodology of transport is focused on robots regulating their effort while pushing objects from an identified pushing location hoping other robots support the object moment on the other end of the center of mass to prevent unintended rotation and create an efficient path of the object to the goal. The design of the object transportation strategy takes cooperation cues from human behaviors when coordinating pushing of heavy objects from two ends. Collaboration is achieved when pushing agents can regulate their effort with one another to maintain an efficient path for the object towards the set goal. Numerous experiments of pushing simple shapes such as disks and rectangular boxes and complex arbitrary shapes with increasing number of robots validate the significance and effectiveness of the proposed method. Detailed robustness studies of changing weight of objects during transportation portrayed the importance of cooperation in multi-agent systems in countering unintended drift effects of the object and maintain a steady efficient path to the goal. </div><div><br></div><div>Each case study is presented independent of one another with the Penguin huddling based self-organizations in response to internal and external stimuli focused on fundamental self-organization methods, and the structure formation and object transportation strategies focused on cooperation in specific applications. All case studies are validated by relevant simulation and experiments to establish the effectiveness of altruistic and cooperative behaviors in multi-robot systems.</div>
|
Page generated in 0.0448 seconds