• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FFT and multigrid accelerated integral equation solvers for multi-scale electromagnetic analysis in complex backgrounds

Yang, Kai, 1982- 19 September 2014 (has links)
Novel integral-equation methods for efficiently solving electromagnetic problems that involve more than a single length scale of interest in complex backgrounds are presented. Such multi-scale electromagnetic problems arise because of the interplay of two distinct factors: the structure under study and the background medium. Both can contain material properties (wavelengths/skin depths) and geometrical features at different length scales, which gives rise to four types of multi-scale problems: (1) twoscale, (2) multi-scale structure, (3) multi-scale background, and (4) multi-scale-squared problems, where a single-scale structure resides in a different single-scale background, a multi-scale structure resides in a single-scale background, a single-scale structure resides in a multi-scale background, and a multi-scale structure resides in a multi-scale background, respectively. Electromagnetic problems can be further categorized in terms of the relative values of the length scales that characterize the structure and the background medium as (a) high-frequency, (b) low-frequency, and (c) mixed-frequency problems, where the wavelengths/skin depths in the background medium, the structure’s geometrical features or internal wavelengths/skin depths, and a combination of these three factors dictate the field variations on/in the structure, respectively. This dissertation presents several problems arising from geophysical exploration and microwave chemistry that demonstrate the different types of multi-scale problems encountered in electromagnetic analysis and the computational challenges they pose. It also presents novel frequency-domain integral-equation methods with proper Green function kernels for solving these multi-scale problems. These methods avoid meshing the background medium and finding fields in an extended computational domain outside the structure, thereby resolving important complications encountered in type 3 and 4 multi-scale problems that limit alternative methods. Nevertheless, they have been of limited practical use because of their high computational costs and because most of the existing ‘fast integral-equation algorithms’ are not applicable to complex Green function kernels. This dissertation introduces novel FFT, multigrid, and FFT-truncated multigrid algorithms that reduce the computational costs of frequency-domain integral-equation methods for complex backgrounds and enable the solution of unprecedented type 3 and 4 multi-scale problems. The proposed algorithms are formulated in detail, their computational costs are analyzed theoretically, and their features are demonstrated by solving benchmark and challenging multi-scale problems. / text
2

Structure multi-échelle et propriétés physico-chimiques des gels de polymères thermosensibles / Multi-scale structure and physico-chemical properties of thermosensitive polymer gels

Chalal, Mohand 06 October 2011 (has links)
La "cryopolymérisation" permet d'obtenir des gels de polymère macroporeux ou "cryogels". Cette méthode a été utilisée pour la synthèse d'hydrogels thermosensibles à base de pNIPA. La température critique TC correspondant à la transition de volume a été déterminée par des mesures de taux de gonflement et par DSC. La macroporosité (distribution de la taille des pores et épaisseur des parois) et son évolution en fonction de T ont été étudiées par la microscopie biphotonique donnant des informations à l'échelle du µm à plusieurs dizaines de µm. La diffusion de rayons X (SAXS et WAXS) a été utilisée pour caractériser la structure multi-échelle (de quelques dixièmes à quelques dizaines de nm) du gel constituant les parois des macropores. Les courbes de diffusion ont été décrites analytiquement. L'évolution des dix paramètres contenus dans l'équation a été étudiée en fonction de T et discutée. Enfin, des expériences utilisant les phonons hyperfréquences générés par la technique des réseaux transitoires avec détection hétérodyne (HD-TG) ont été réalisées. Ces mesures ont permis de déterminer la vitesse de propagation de l'onde ultra-sonore (à 340 MHz), son atténuation, et la constante de diffusion thermique à différentes températures. / "Cryopolymerisation" yields macroporous gels named "cryogels". The method was used to synthesise thermosensitive pNIPA based hydrogels. The critical temperature TC corresponding to the volume phase transition was determined by swelling ratio measurements and DSC. The macroporosity (pore size distribution and wall thickness) and its change with temperature, was investigated by two-photon microscopy yielding information at the micrometer scale (a few tenths to tens of micrometers). X-ray scattering (SAXS and WAXS) was used to characterise the multi-scale structure of the gel forming the pore walls. The scattering curves were described analytically. The variation with temperature of the 10 parameters contained in the equation was investigated and discussed. Finally, heterodyne detected transient grating experiments were performed on a bulk pNIPA gel. These measurements allowed the determination of the speed of the ultrasonic wave (at 340 MHz), its attenuation and the thermal diffusion constant in the gel at different temperatures.
3

Electrolytes polymères monofonctionnels à conduction monocationique : synthèse et propriétés de transport d'ions lithium / Mono-EndCapped Single-Ion Polymer Electrolytes : Synthesis & Lithium-Ion Transport Properties

Overton, Philip 27 March 2019 (has links)
Cette thèse décrit des électrolytes polymères à conduction mono-ionique (EC-SIPEs). Ces macromolécules sont constituées de n* unités répétition d’oxyde d’éthylène (OE) et d’un groupe fonctionnel ionique à une des extrémités de leur architecture macromoléculaire asymétrique. La bibliothèque des EC-SIPEs synthétisée est basée sur des poly(oxyde d’éthylène) mono méthyl éther (mPOEn-OH) ayant 8, 10, 20 et 55 unités EO. Les anions sont liés de manière covalente au squelette polymère via une des extrémités. Leur mobilité est donc limitée par celles de ces macromolécules fonctionnelles. Les EC-SIPES constituent des conducteurs mono-ioniques; la majorité des charges étant transférées par les cations Li+ comme démontré par chronoampérométrie.Les extrémités de chaînes sont sélectionnées pour développer des interactions ioniques facilitant la conduction de cation Li+ ainsi que des interactions non-covalentes de types dipôles-dipôles, Van der Waals, et d’empilements π-π. Des hydrocarbures aromatiques polycycliques de type naphtalène (naph) et pyrène (pyr) sont étudiés comme extrémités de chaines. Les groupes terminaux fonctionnels sont lithiés : sulfonates (-SO3Li, -PhSO3Li), N-naphtyl sulfonamide (-SO2N(Li)Naph) et N-arylamines (-N(Li)Naph, -N(Li)Pyr). Deux types d'extrémités ciblent des propriétés spécifiques : i) "double-sel" possédant deux fonctions ioniques et ii) zwittérionique conduisant le cation Li+ et l’anion TFSI-. Le doublement du nombre de Li+ par groupe terminal n’autorise pas l’amélioration attendue de la conductivité ionique (σ). Ceci implique que σ est limitée par la physicochimie des chaînes polymères et non par la concentration en Li+. L'EC-SIPE zwittérionique a un nombre de transport de lithium élevé (t+Li= 0,8) qui implique une mobilité réduite de l’anion TFIS- par rapport au cation Li+. La meilleure performance est obtenue avec le mPOEn-N(Li)Pyr (OEn= 10, 20, 55) : σ > 1,0*10-4 S/cm à T > 40 °C et 1*10-3 S/cm à 100 °C. Cet EC-SIPE à une résistivité constante en cyclage galvanostatique (j= 10 μA/cm^2 ; 10 périodes de 4h ; pile Li|Li ; 40 °C) et une stabilité électrochimique dans la plage de potentiel 0 V-3,7 V vs. Li/Li+ (pile Li|Stainless steel ; vitesse de balayage en potentiel 1,0 mV/s ; 40 °C).Le contexte de cette thèse vis à vis de l’état de l’art des électrolytes polymères pour les batteries Li-Ion est présenté dans le chapitre I. Deux sous-classes d’électrolytes sont discutées: i) les polymères dans lesquels un sel est solvaté (SiP) et ii) les polymères à conduction mono-ionique. La conception d'électrolytes polymères efficaces à conductivité ionique améliorée est ciblée. Une attention toute particulière est accordée aux concepts d'auto-organisation hiérarchique visant à la création de chemins percolant assurant le transport d’ions sur les distances microniques séparant les électrodes d’une batterie. Enfin, la stratégie de synthèse mise en œuvre dans cette thèse est décrite.Les principaux résultats de cette thèse sont présentés et discutés au chapitre II. Une bibliothèque d'EC-SIPEs est caractérisée vis-à-vis de leurs performances électrochimiques, thermiques et de leurs propriétés de transport ionique spécifique. Des caractéristiques résistives apparaissent à haute température et sont supposées résulter de l'agrégation des groupes ioniques terminaux. Les valeurs de conductivité des EC-SIPEs (55 Unités OE) s'améliorent d'un demi-ordre de grandeur lors du cyclage en température au-delà de la température de fusion des domaines cristallins de POE. La discussion se termine par la proposition d'un modèle de percolation des domaines ioniques dans les EC-SIPEs où les groupes ioniques sont localisés aux interfaces des domaines POE. La percolation des domaines ioniques devrait être améliorée dans des conditions appropriées de température et de force électromagnétique. Les méthodes de synthèse mises en œuvre dans cette thèse et les caractérisations des EC-SIPEs sont décrites au chapitre III. / This thesis presents "End-Capped Single-Ion Polymer Electrolytes" (EC-SIPEs) that are ionically conductive polymers having n repeating ethylene oxide (EO) units and an ionic functional group at one chain terminal. The library of EC-SIPEs presented are based on poly(ethylene oxide) mono methyl ether (mPEOn-OH) having EOn = 8, 10, 20 and 55. The anions of the electrolyte salt pair are covalently bound to the polymer as part of the end-group design. The mobility of the anion is thus limited by the low mobility of the polymer, relative to Li+. These are "Single-Ion" conductors because the majority of ionic charge transferred by Li+ cations, as demonstrated by chronoamperometry.The end-group designs target not only ionic interactions that facilitate "single-ion" conduction of Li+, but also other specific non-covalent interactions such as dipole-dipole, Van der Waals, and π-π stacking. End-groups having naphthalene (naph) and pyrene (pyr) polycyclic aromatic hydrocarbon (PAH) moieties are investigated. The functional end-groups are lithiated sulfonates (-SO3Li, -PhSO3Li), a N-naphyl sulfonamide (-SO2N(Li)Naph), and secondary N-aryl amines (-N(Li)Naph, -N(Li)Pyr). Two end-groups target specific properties: i) a "double salt" end-group has two ionic functions at one chain end, and ii) a zwitterionic EC-SIPE that conducts Li+ cations and TFSI- anions. The doubling of the number of Li+ per end-group does not correlate to an expected improvement in ionic conductivity (σ). This implies that σ is limited by the physicochemical properties of the EC-SIPE and not the Li+ concentration. The zwitterionic EC-SIPE has a high lithium transference number (t+Li= 0.8) that implies decreased mobility of the TFIS- counter-anion relative to Li+. The best overall performance is achieved by mPEOn-N(Li)Pyr (EOn= 10, 20, 55), that has σ > 1.0*10-4 S/cm at T > 40 °C, and reaches 1*10-3 S/cm at 100 °C. It exhibits constant resistivity under galvanostatic cycling (j= 10 μA.cm-2, 10*4h periods, Li|Li cell, 40 °C) and is electrochemically stable in the 0 V-3.7 V vs. Li/Li+ potential range (Li|stainless steel cell, 1.0 mV/s sweep rate, 40 °C).In Chapter I the context of the thesis is discussed through review of state-of-the-art polymer electrolytes for Li-ion batteries. These are divided into two sub-classes: i) Salt-in-Polymer (SiP) and ii) "Single-Ion" polymer electrolytes. The design of polymer electrolytes towards efficient and effective ionic conductivity is emphasized. Special attention is given to concepts for the organisation of bulk morphology for the creation of ion transport pathways that efficiently percolate through the micron length scale separating electrodes of a battery. Finally, the synthetic strategy implemented in this thesis is described.The principle results of the thesis are presented and discussed in Chapter II. A library of EC-SIPEs are characterised in terms of their electrochemical, thermal and specific ion-transport performances. Resistive features appear at high temperature and are expected to result from the aggregation of ionic end-groups. Surprisingly, the σ of EC-SIPEs having EOn= 55 improves by as much as half an order of magnitude with repeated cycling of temperature to above Tm of crystalline PEO (in the +40 °C to +100 °C range). The analysis of EC-SIPEs having different end-groups and PEO chains having EOn= 8, 10, 20, and 55 lead to the proposition of a tentative model for the percolation of ionic pathways through the EC-SIPE bulk. It is hypothesized that the ionic end-groups are localised at the grain boundaries of PEO domains. Percolation of these boundaries are proposed to be improved under appropriate, mild conditions of temperature and electromagnetic force. Finally, the synthesis methods implemented in this thesis and characterizations of EC-SIPEs are described in Chapter III.

Page generated in 0.0567 seconds