Spelling suggestions: "subject:"multitask maskininlärning"" "subject:"multitask påmaskininlärning""
1 |
MultiModal Neural Network for Healthcare Applications / Multimodal neural network för tillämpningar inom hälso- och sjukvårdSatayeva, Malika January 2023 (has links)
BACKGROUND. Multimodal Machine Learning is a powerful paradigm that capitalizes on the complementary predictive capabilities of different data modalities, such as text, image, time series. This approach allows for an extremely diverse feature space, which proves useful for combining different real-world tasks into a single model. Current architectures in the field of multimodal learning often integrate feature representations in parallel, a practice that not only limits their interpretability but also creates a reliance on the availability of specific modalities. Interpretability and robustness to missing inputs are particularly important in clinical decision support systems. To address these issues, the iGH Research Group at EPFL proposed a modular sequential input fusion called Modular Decision Support Network (MoDN). MoDN was tested on unimodal tabular inputs for multitask outputs and was shown to be superior to its monolithic parallel counterparts, while handling any number and combination of inputs and providing continuous real-time predictive feedback. AIM. We aim to extend MoDN to MultiModN with multimodal inputs and compare the benefits and limitations of sequential fusion with a state-of-the-art parallel fusion (P-Fusion) baseline.METHODS & FINDINGS. We align our experimental setup with a previously published P-Fusion baseline, focusing on two binary diagnostic predictive tasks (presence of pleural effusion and edema) in a popular multimodal clinical benchmark dataset (MIMIC).We perform four experiments: 1) comparing MultiModN to P-Fusion, 2) extending the architecture to multiple tasks, 3) exploring MultiModN's inherent interpretability in several metrics, and 4) testing its ability to be resistant to biased missingness by simulating missing not at random (MNAR) data during training and flipping the bias at inference. We show that MultiModN's sequential architecture does not compromise performance compared with the P-Fusion baseline, despite the added advantages of being multitask, composable and inherently interpretable. The final experiment shows that MultiModN resists catastrophic failure from MNAR data, which is particularly prevalent in clinical settings. / Multimodal maskininlärning är ett kraftfullt paradigm som utnyttjar de kompletterande prediktiva egenskaperna hos olika datamodaliteter, såsom text, bild, tidsserier. Detta tillvägagångssätt möjliggör ett extremt varierat funktionsutrymme, vilket visar sig vara användbart för att kombinera olika verkliga uppgifter i en enda modell. Nuvarande arkitekturer för multimodal inlärning integrerar ofta funktionsrepresentationer parallellt, en praxis som inte bara begränsar deras tolkningsbarhet utan också skapar ett beroende av tillgängligheten av specifika modaliteter. Tolkningsbarhet och robusthet mot saknade indata är särskilt viktigt i kliniska beslutsstödsystem. För att lösa dessa problem har forskargruppen iGH vid EPFL föreslagit en modulär sekventiell fusion av indata som kallas Modular Decision Support Network (MoDN). MoDN testades på unimodala tabulära indata för multitask-utdata och visade sig vara överlägsen sina monolitiska parallella motsvarigheter, samtidigt som den hanterar alla antal och kombinationer av indata och ger kontinuerlig prediktiv feedback i realtid. Vårt mål är att utöka MoDN till MultiModN med multimodala indata och jämföra fördelarna och begränsningarna med sekventiell fusion med en toppmodern baslinje för parallell fusion (P-Fusion). Vi anpassar vår experimentuppsättning till en tidigare publicerad P-Fusion-baslinje, med fokus på två binära diagnostiska prediktiva uppgifter (närvaro av pleural effusion och ödem) i en populär multimodal klinisk benchmark datauppsättning (MIMIC), som omfattar bilder, text, tabelldata och tidsserier. Vi utför fyra experiment och visar att MultiModN:s sekventiella arkitektur inte försämrar prestandan jämfört med P-Fusions baslinje, trots de extra fördelarna med att vara multitasking, komponerbar och tolkningsbar i sin egen rätt. Det sista experimentet visar att MultiModN motstår katastrofala fel från MNAR-data, vilket är särskilt vanligt i kliniska miljöer.
|
Page generated in 0.0558 seconds