Spelling suggestions: "subject:"multigroupe"" "subject:"multigroupes""
1 |
Simulation de modèles hydrodynamiques et de transfert radiatif intervenant dans la description d'écoulements astrophysiques / Simulation of hydrodynamic and radiative transfer models involved in the description of astrophysical flowsNguyen, Hung Chinh 07 June 2011 (has links)
Ce sujet concerne un travail pluridisciplinaire mathématique et astrophysique. Le but de cette thèse est l'étude des modèles d'hydrodynamique radiative dont l'application est bien évidemment très vaste en physique et astrophysique. Les modèles M1-multigroupes sont explorés pour décrire le transfert radiatif sans faire à priori d'hypothèse sur la profondeur optique du milieu. L'intérêt qui découle directement de ce travail est le développement du code d'hydrodynamique radiative HADES 2D permettant le calcul massivement parallèle. Il autorise des simulations dans des configurations astrophysiques réalistes en termes de nombre de Mach et de contraste de densité et de température entre les différents milieux. Nous nous sommes concentrés sur deux applications intéressantes : les jets d'étoiles jeunes et les chocs radiatifs dont les premières simulations seront présentées. / This topic is a multidisciplinary work between mathematics and astrophysics. The aim of this thesis is the study of radiation hydrodynamic models of which application is obviously very broad in physics and astrophysics. M1-multigroup models are explored to describe the radiative transfer without a priori assumption on the optical depth of the medium. The interest ensuing directly from this work is the development of a radiation hydrodynamic code, namely HADES 2D, for massively parallel computing. It allows simulations in realistic astrophysical configurations in terms of Mach number, density and temperature contrasts between different environments. We focused on two interesting applications: the jets from young stars and the radiative shocks of which first simulations will be presented.
|
2 |
Méthodes numériques pour des systèmes hyperboliques avec terme source provenant de physiques complexes autour du rayonnementSarazin Desbois, Céline 12 March 2013 (has links) (PDF)
Ce manuscrit est dédié à l'approximation numérique de plusieurs modèles du transfert radiatif. Dans un premier temps, l'attention est portée sur le modèle cinétique d'ordonnées discrètes. Dans le but de coupler ce modèle avec d'autres phénomènes plus lents, il est nécessaire d'avoir des méthodes numériques performantes et précises sur des temps longs. À partir d'une double approximation polynomiale de la solution en temps et en espace, on développe un schéma de type GRP d'ordre élevé sans restriction sur le pas de temps pour un système hyperbolique linéaire sur des maillages non structurés. Ce schéma est ensuite étendu pour le modèle d'ordonnées discrètes. Dans un second temps, on s'intéresse à des modèles aux moments issus du transfert radiatif. En effet, dans certaines applications, les modèles aux moments de type M1 conservent de nombreuses propriétés de l'ETR et fournissent une approximation suffisante de la solution. Après avoir résolu le problème de Riemann associé au modèle M1 gris, on considère l'approximation numérique du modèle M1 multigroupe. Une attention particulière est portée sur le calcul des moyennes d'opacités et des lois de fermeture. Un algorithme de précalculs est alors mis en place. La dernière application traitée dans ce mémoire porte sur une extension du transfert radiatif pour estimer des doses de radiothérapie. À la différence du M1 gris usuel, les flux dépendent ici de fonctions peu régulières en espace. Grâce à des changements de variables, un schéma HLL rétrograde est développé. De nombreux exemples numériques illustrent l'intérêt des schémas obtenus dans cette étude.
|
3 |
Conception et développement d'un mailleur énergétique adaptatif pour la génération des bibliothèques multigroupes des codes de transportMosca, Pietro 09 December 2009 (has links) (PDF)
Les codes déterministes de transport résolvent l'équation stationnaire de Boltzmann dans un formalisme discrétisé en énergie appelé multi- groupe. La transformation des données continues en multigroupes est obtenue en moyennant les sections fortement variables des noyaux ré- sonnants avec le flux solution des modèles physiques d'autoprotection et celles des noyaux non résonnants avec le spectre énergétique représentatif d'un type de réacteur. Jusqu'ici l'erreur induite par ce type de traitement ne pouvait qu'être évaluée a posteriori. Pour y remédier, nous avons étu- dié dans cette thèse un ensemble de méthodes, permettant de contrôler a priori la précision et le coût du calcul de transport multigroupe. L'optimisation du maillage énergétique est réalisée selon un proces- sus en deux étapes : la création d'un maillage de référence et sa conden- sation optimisée. Dans la première étape, en raffinant localement et glo- balement le maillage énergétique, on cherche une solution multigroupe sur un maillage énergétique fin avec une autoprotection en sous-groupes de précision équivalente au solveur de référence (Monte Carlo ou déter- ministe ponctuel). Dans la deuxième étape, une fois fixé le nombre de groupes en fonction du coût admissible du calcul et choisis les modèles d'autoprotection les plus adéquats pour la filière à traiter, on cherche les meilleures bornes du maillage de référence minimisant les erreurs des taux de réaction grâce à l'algorithme stochastique d'optimisation des es- saims particulaires. Cette nouvelle approche a permis de définir des nouveaux maillages pour la filière rapide aussi précis que les maillages actuels mais présentant un nombre inférieur de groupes.
|
4 |
Amélioration des méthodes de calcul de cœurs de réacteurs nucléaires dans APOLLO3 : décomposition de domaine en théorie du transport pour des géométries 2D et 3D avec une accélération non linéaire par la diffusion / Contribution to the development of methods for nuclear reactor core calculations with APOLLO3 code : domain decomposition in transport theory for 2D and 3D geometries with nonlinear diffusion accelerationLenain, Roland 15 September 2015 (has links)
Ce travail de thèse est consacré à la mise en œuvre d’une méthode de décomposition de domaine appliquée à l’équation du transport. L’objectif de ce travail est l’accès à des solutions déterministes haute-fidélité permettant de correctement traiter les hétérogénéités des réacteurs nucléaires, pour des problèmes dont la taille varie d’un motif d’assemblage en 3 dimensions jusqu’à celle d’un grand cœur complet en 3D. L’algorithme novateur développé au cours de la thèse vise à optimiser l’utilisation du parallélisme et celle de la mémoire. La démarche adoptée a aussi pour but la diminution de l’influence de l’implémentation parallèle sur les performances. Ces objectifs répondent aux besoins du projet APOLLO3, développé au CEA et soutenu par EDF et AREVA, qui se doit d’être un code portable (pas d’optimisation sur une architecture particulière) permettant de réaliser des modélisations haute-fidélité (best estimate) avec des ressources allant des machines de bureau aux calculateurs disponibles dans les laboratoires d’études. L’algorithme que nous proposons est un algorithme de Jacobi Parallèle par Bloc Multigroupe. Chaque sous domaine est un problème multigroupe à sources fixes ayant des sources volumiques (fission) et surfaciques (données par les flux d’interface entre les sous domaines). Le problème multigroupe est résolu dans chaque sous domaine et une seule communication des flux d’interface est requise par itération de puissance. Le rayon spectral de l’algorithme de résolution est rendu comparable à celui de l’algorithme de résolution classique grâce à une méthode d’accélération non linéaire par la diffusion bien connue nommée Coarse Mesh Finite Difference. De cette manière une scalabilité idéale est atteignable lors de la parallélisation. L’organisation de la mémoire, tirant parti du parallélisme à mémoire partagée, permet d’optimiser les ressources en évitant les copies de données redondantes entre les sous domaines. Les architectures de calcul à mémoire distribuée sont rendues accessibles par un parallélisme hybride qui combine le parallélisme à mémoire partagée et à mémoire distribuée. Pour des problèmes de grande taille, ces architectures permettent d’accéder à un plus grand nombre de processeurs et à la quantité de mémoire nécessaire aux modélisations haute-fidélité. Ainsi, nous avons réalisé plusieurs exercices de modélisation afin de démontrer le potentiel de la réalisation : calcul de cœur et de motifs d’assemblages en 2D et 3D prenant en compte les contraintes de discrétisation spatiales et énergétiques attendues. / This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems’ size ranging from colorsets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each subdomain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the subdomains). The multi-group problem is solved in each subdomain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the subdomains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of memory required for high-fidelity modeling. Thus, we have completed several modeling exercises to demonstrate the potential of the method: 2D full core calculation of a large pressurized water reactor and 3D colorsets of assemblies taking into account the constraints of space and energy discretization expected for high-fidelity modeling.
|
5 |
Modèle épidémiologique multigroupe pour la transmission de la COVID-19 dans une résidence pour personnes âgéesNdiaye, Jean François 11 1900 (has links)
Dans ce mémoire, nous considérons un modèle épidémiologique multigroupe dans une population hétérogène, pour décrire la situation de l’épidémie de la COVID-19 dans une résidence pour personnes âgées. L’hétérogénéité liée ici à l’âge reflète une transmission élevée dûe à des interactions accrues, et un taux de mortalité plus élevé chez les personnes âgées. Du point de vue mathématique, nous obtenons un modèle SEIR multigroupe d’équations intégro-différentielles dans lequel nous considérons une distribution générale de la période infectieuse. Nous utilisons la méthode des fonctions de Lyapunov et une approche de la théorie des graphes pour déterminer le rôle du nombre de reproduction de base \(\mathcal{R}_0\) : l’état d’équilibre sans maladie est globalement asymptotiquement stable et l’épidémie s’éteint dans les deux groupes lorsque \(\mathcal{R}_0 \leq 1\), par contre elle persiste et l’état d’équilibre endémique est globalement asymptotiquement stable lorsque \(\mathcal{R}_0>1\). Les simulations numériques illustrent l’impact des stratégies de contrôle de la santé publique. / In this thesis, we consider a multiple group epidemiological model in a heterogeneous population to describe COVID-19 outbreaks in an elderly residential population. Age-based heterogeneity reflects higher transmission with enhanced interactions, and higher fatality rates in the elderly. Mathematically, we analyse a SEIR model in the form of a system of integro-differential equations with general distribution function for the infectious period. Lyapunov functions and graph-theoretical methods are employed to establish the role played by the basic reproduction ratio \(\mathcal{R}_0\) : global asymptotic stability of the disease-free equilibrium and no sustained outbreak when \(\mathcal{R}_0 \leq 1\), as opposed to persistent outbreak and globally asymptotic endemic equilibrium when \(\mathcal{R}_0>1\). Numerical simulations are presented to illustrate public health control strategies.
|
Page generated in 0.034 seconds