• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 31
  • 29
  • 20
  • 16
  • 16
  • 15
  • 13
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A Modified EDCF with Dynamic Contention Control for Real-Time Traffic in Multihop Ad-Hoc Networks

Chiu, Jen-Hung 28 July 2005 (has links)
IEEE 802.11 has become the standard in wireless LAN. Originally, 802.11 is designed for the best-effort services only. To support the increasing demand of delay-sensitive applications, IEEE 802.11 Task Group E is developing a QoS-aware MAC protocol, EDCF, for differentiated services. However, when the network becomes congested, there exists unexpected packet delay due to collisions and retransmissions. This thesis proposes a dynamic contention control (DCC) scheme to reduce packet delay and increase the percentage of packets arriving in time. DCC estimates per-hop delay, denoted as Mrtt, and end-to-end delay, denoted as Sigma_t, based on either the received MAC-layer ACK or the control packets of a reactive routing protocol. Then, Mrtt and Sigma_t are used to dynamically adjust the associated contention window for each priority. Besides, when a frame is retransmitted, the backoff time is determined according to the remaining end-to-end delay instead of a uniformly distributed random number. For the propose of evaluation, we perform simulations on the well-known network simulator, NS-2. DCC is compared with the EDCF and one previously proposed scheme, AEDCF. The simulation results demonstrate the effectiveness and superiority of DCC.
32

Improving Throughput By Traffic Aware Routing In Non-transparent Ieee 802.16j Networks

Tekdogan, Ridvan 01 May 2010 (has links) (PDF)
WiMAX is one of the rising communications technology which enables last mile broadband mobile wireless Internet connectivity. IEEE Std 802.16-2009 is the last accepted standard which targets mobile and fixed wireless broadband access. The standard defines two types of stations which are base and mobile stations. A base station has a wired connection to backhaul network and gives broadband wireless service to mobile stations. IEEE 802.16j standard which is an amendment to IEEE 802.16, introduces Multihop Relaying for increasing coverage and throughput. Deployment of relay stations, where the backbone network does not exist, is a cost effective solution. Two modes of operations are defined for relay station: transparent mode and non-transparent mode. Relays in transparent mode, are deployed for improving signal quality, so that mobile stations can use relay link for increasing throughput. In non-transparent mode, relays can send management packets, so that mobile stations, which are not in the direct reach of a base station, can connect to network through relay stations. In domain specific networks main data traffic is caused by the communication between subscribers in same region. In this thesis shortcut routing scheme is proposed as sending packets to destination directly through relay station for data traffic between two subscribers with a common relay. With shortcut routing, network throughput is increased by preventing links at higher layer in topology from becoming bottleneck. Moreover, by traversing fewer hops, latency decreases. We also propose traffic aware path selection method, where a path will more.
33

Multihop Concept in Cellular Systems

Rangineni, Kiran January 2008 (has links)
We are very thirsty in terms of everything to fulfil our needs in a sophisticated way, and this leads me choose the so called master thesis titled “Multihop Concept in Cellular Systems”. This thesis introduces an approach towards the integration of relaying or multihop scheme in the next generation of cellular networks. In a multihop cellular architecture, the users send their data to the base station via relay station or with direct communication to the base station. These relay stations can either be the nomadic, fixed at specific location or users’ mobile station (i.e. mobile relay station). The main objective of this paper is to compare the difference between the relaying network architecture with different channel bandwidth as well as their performance gain. For this we integrate the relay station into conventional cellular networks using IEEE 802.16j (One of the standard introduced relay station concept in WiMAX) OFDMA (Orthogonal Frequency Division Multiple Access is a transmission technique that is based on many orthogonal subchannels (set of carriers) that transmits simultaneously). The results show that under certain conditions the throughput and coverage of the system has been increased with the introduction of the relay station in to cellular base station zone.
34

Simple Distributed Multihop Diversity Relaying Based on Repetition for Low-Power-Low-Rate Application

Li, Yanwen Unknown Date
No description available.
35

Performance enhancements in wireless multihop ad-hoc networks

Abdullah, Ahmad Ali 01 December 2011 (has links)
Improving the performance of the wireless multihop ad hoc networks faces several challenges. In omni-directional antenna based solutions, the use of the RTS/CTS mechanism does not completely eliminate the hidden-terminal and exposed-terminal problems. Deafness is an additional challenge to the directional antenna based solutions. This dissertation, first develops analytical models for quantifying the throughput and delay in wireless multihop ad hoc networks. The models consider the impact of hidden terminals using the realistic signal to interference and noise ratio model and consider random node distribution. The proposed analysis is applicable to many wireless MAC protocols and applications. The analytical results reveal several important issues. The first issue is quantifying the impact of adjusting the transmission range on the throughput and delay in wireless multihop ad hoc networks. The other issue is the hidden terminal region is closely related to the distance between the transmitter and the receiver. Thus, it is possible to adjust the transmission range to optimize the whole network performance. These results provide important guidelines for network planning and protocol optimization in wireless multihop ad hoc networks. Second, it proposes a new Enhanced Busy-tone Multiple Access (EBTMA) medium access control (MAC) protocol for minimizing the negative impact of both the hidden-terminal and the exposed-terminal problems. The new protocol can also enhance the reliability of packet broadcasts and multicasts which are important for many network control functions such as routing. Different from other busy-tone assisted MAC protocols, the protocol uses a non-interfering busy-tone signal in a short period of time, in order to notify all hidden terminals without blocking a large number of nodes for a long time. In addition, the proposed EBTMA protocol can co-exist with the existing 802.11 MAC protocol, so it can be incrementally deployed. Third, it investigates how to support the directional antennas in ad hoc multihop networks for achieving higher spatial multiplexing gain and thus higher network throughput. A new MAC protocol called Dual Sensing Directional MAC (DSDMAC) protocol for wireless ad hoc networks with directional antennas is proposed. The proposed protocol differs from the existing protocols by relying on a dual sensing strategy to identify deafness, resolve the hidden-terminal problem and to avoid unnecessary blocking. Finally, this dissertation provides important results that help for network planning and protocol optimization in wireless multihop ad hoc networks in quantifying the impact of transmission range on the throughput and the delay. The accuracy of these results has been verified with extensive discrete event simulations. / Graduate
36

Cross-layer Optimization in Wireless Multihop Networks

Shabdanov, Samat 06 December 2012 (has links)
In order to meet the increasing demand for higher data rates, next generation wireless networks must incorporate additional functionalities to enhance network throughput. Multihop networks are considered as a promising alternative due to their ability to exploit spatial reuse and to extend coverage. Recently, industry has shown increased interest in multihop networks as they do not require additional infrastructure and have relatively low deployment costs. Many advances in physical and network layer techniques have been proposed in the recent past and they have been studied mostly in single-hop networks. Very few studies, if any, have tried to quantify the gains that these techniques could provide in multihop networks. We investigate the impact of simple network coding, advanced physical layer and cooperative techniques on the maximum achievable throughput of wireless multihop networks of practical size. We consider the following advanced physical layer techniques: successive interference cancellation, superposition coding, dirty-paper coding, and some of their combinations. We achieve this by formulating several cross-layer frameworks when these techniques are jointly optimized with routing and scheduling. We also formulate power allocation subproblems for the cases of continuous power control and superposition coding. We also provide numerous engineering insights by solving these problems to optimality.
37

Transmitter Macrodiversity in Multihop Sensor Networks

Saeed, Munawar January 2009 (has links)
Wireless Sensor Network is an emerging technology that has applicationsin Wireless Actuators, remote controlling, distribution of softwareupdates and distribution of parameters to sensor nodes. This projectwork basically covers the concept of macro-diversity. This is a situationin which several transmitters are used for transferring the same signal (inmulti-hop sensor networks) to check the increase in connected nodes orin network coverage. Transmitter macro-diversity increases the receivedsignal strength and thus increases the signal-to-noise ratio which resultsin a lower outage probability. To accomplish this task three differentstrategies have been simulated using thirteen different cases. Broadcastingis used when forming SFN of size one (strategy one) and uni-castingis used for forming SFNs of size two (strategy two) and size three (strategythree).In this project reference material has been gathered frombooks, journals and web sources; and MATLAB has been used as thesimulation tool in which codes are written in the M programming language.The algorithm works firstly by discovering all the nodes that areconnected directly with the Base Station through multi-hoping, afterwhich the second algorithm is applied to check how many more nodescan be reached by forming SFNs. A gain of up to 79% was observedusing strategy one and strategy two and up to 83% in strategy three.The results shows that strategy one (Forming SFNs using BroadcastingTechnique) is the best as more nodes can be reached (for different cases)than for the other two strategies (forming SFNs using uni-casting technique).
38

Using Existing Infrastructure as Support for Wireless Sensor Networks

Neander, Jonas January 2006 (has links)
Denna avhandling handlar om hur befintliga datorinfrastrukturer i t.ex. sjukhus och industrier kan avlasta sensornätverk med energikrävande uppgifter. Vi har forskat på olika aspekter som gör det möjligt att förlänga livslängden på dessa sensornätverk. Avhandlingen presenterar en ny plattform för sensornätverk tillsammans med inledande simuleringar som påvisar att vår plattform ökar livslängden på dessa typer av nätverk. Generella sensornätverk är uppbyggda av tätt grupperade, trådlösa, batteridrivna datorer som kan vara så små som en kubikmillimeter. Datorerna kallas för sensorer eller sensornoder eftersom de har en eller flera inbyggda sensorer som känner av sin omgivning. En sensor har till uppgift att samla information från sin omgivning, t.ex. temperatur, fuktighet, vibrationer, hjärtslag eller bilder. Sensorerna skickar sedan informationen till en insamlingsstation någonstans i nätverket. I de typer av tillämpningar vi tittar på är det viktigt att minimera energiförbrukningen, så att man maximerar livslängden på sensornätverket. Avhandlingen presenterar en lösning där befintlig datorinfrastruktur fungerar som hjälpdatorer/avlastare till ett sensornätverk. Hjälpdatorerna, eller basstationerna som vi kallar dem i avhandlingen, hanterar energikrävande uppgifter som t.ex. vilken sensor som ska kommunicera med vem samt vid vilken tidpunkt etc. Då kan sensorerna i nätverket fokusera på att utföra sina egna uppgifter tills dess att basstationen säger att uppgifterna ändrats. Simuleringar visar att vår plattform kan skicka upp till 97 % mera information till basstationen än en jämförbar plattform med samma energimängd. 88 % av våra sensorer är fortfarande vid liv när den andra plattformens sensorer förbrukat all sin energi. Ett exempel på hur dessa typer av nätverk kan användas är att övervaka patienters hälsa och kondition i sjukhus eller sjukhem. Patienter behöver inte ha en fast sängplats där en viss typ av medicinskt övervakningsinstrument finns tillgänglig utan kan placeras där det finns en ledig sängplats. Via trådlös kommunikation skickar sensorerna sedan hälsoinformation som t.ex. hjärtfrekvens och blodtryck till en basstation som i sin tur skickar vidare till ett centralt övervakningsinstrument någonstans på sjukhuset. Övervakningsinstrumentet behandlar informationen och larmar personal med rätt kompetens vid behov. Larmet kan skickas till en mobiltelefon eller en liten handdator som personalen alltid bär med sig. Med larmet skickas även information om var patienten befinner sig och all nödvändig data för att personalen snabbt ska kunna ställa en första diagnos. På detta sätt kan man spara in på antalet specialbyggda sängplatser och slippa dyrbara installationer av medicintekniska utrustningar knutna till en sängplats. / Recent advancements in electronic design, such as low-power circuits, energy efficient wireless communication, and improved energy supply, has enabled the vision of wireless sensor networks to become a reality. Wireless sensor networks typically consist of hundreds up to thousands of collaborating low-cost, battery-driven and wireless sensor nodes with scarce resources. The wireless sensor nodes are typical small physical entities, and usually small as a matchbox but can in extreme cases be no larger than a cubic millimeter. In this thesis we present an architecture called AROS that uses existing infrastructure to aid in the management of wireless sensor networks. As an example, the existing infrastructure could be situated in hospitals or industrial buildings. The existing infrastructure can aid in prolonging the lifetime of the wireless sensor network by having "unlimited'' energy, long range radio capacity, and high-speed computers. We enable prolonged lifetime by centralizing some of the energy consuming administrative functionality of wireless sensor networks. We show, by simulations, that the AROS architecture is able to prolong the lifetime of the sensor nodes. AROS is compared to a well known cluster based architecture, LEACH. The comparisons show that AROS with static configuration performs at least as well as LEACH in small wireless sensor networks in the size 100x100m, and up to 97 % better in long distance wireless sensor networks in the size of 400x400m. We show that AROS still has got 88 % of its sensor nodes alive when LEACHs' network demises. In our simulations we have also studied how dynamic network clustering in AROS, using a TDMA scheduler and non-mobile wireless sensor nodes, affects the amount of data received by a base station. We show that AROS is better than LEACH-C in collecting data to the base station with the same total amount of energy for long distance networks and that AROS performs as well or better than LEACH-C in small wireless sensor networks.
39

On Design and Analysis of Energy Efficient Wireless Networks with QoS

Vankayala, Satya Kumar January 2017 (has links) (PDF)
We consider optimal power allocation policies for a single server, multiuser wireless communication system. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity. We also provide closed-form optimal power policies when there is a hard deadline delay constraint. Later on, we also extend single hop results to multihop networks. First we consider the case, when the transmission rate is a linear function of power. We provide low complexity algorithms for joint routing, scheduling and power control which ensure stability of the queues, certain minimum rates, end-to-end hard deadlines, and/or upper bounds on the end-to-end mean delays. Further we extend these results to the multihop networks where the power is a general monotonically increasing function of rate. For our algorithms, we also provide rates of convergence to the stationary distributions for the queue length process and also approximate end-to-end mean delays. Finally, we provide computationally efficient algorithms that minimize the total power when there is a end-to-end hard deadline delay constraint.
40

Network coding for multihop wireless networks : joint random linear network coding and forward error correction with interleaving for multihop wireless networks

Susanto, Misfa January 2015 (has links)
Optimising the throughput performance for wireless networks is one of the challenging tasks in the objectives of communication engineering, since wireless channels are prone to errors due to path losses, random noise, and fading phenomena. The transmission errors will be worse in a multihop scenario due to its accumulative effects. Network Coding (NC) is an elegant technique to improve the throughput performance of a communication network. There is the fact that the bit error rates over one modulation symbol of 16- and higher order- Quadrature Amplitude Modulation (QAM) scheme follow a certain pattern. The Scattered Random Network Coding (SRNC) system was proposed in the literature to exploit the error pattern of 16-QAM by using bit-scattering to improve the throughput of multihop network to which is being applied the Random Linear Network Coding (RLNC). This thesis aims to improve further the SRNC system by using Forward Error Correction (FEC) code; the proposed system is called Joint RLNC and FEC with interleaving. The first proposed system (System-I) uses Convolutional Code (CC) FEC. The performances analysis of System-I with various CC rates of 1/2, 1/3, 1/4, 1/6, and 1/8 was carried out using the developed simulation tools in MATLAB and compared to two benchmark systems: SRNC system (System-II) and RLNC system (System- III). The second proposed system (System-IV) uses Reed-Solomon (RS) FEC code. Performance evaluation of System IV was carried out and compared to three systems; System-I with 1/2 CC rate, System-II, and System-III. All simulations were carried out over three possible channel environments: 1) AWGN channel, 2) a Rayleigh fading channel, and 3) a Rician fading channel, where both fading channels are in series with the AWGN channel. The simulation results show that the proposed system improves the SRNC system. How much improvement gain can be achieved depends on the FEC type used and the channel environment.

Page generated in 0.0375 seconds