• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transmitter Macrodiversity in Multihop Sensor Networks

Saeed, Munawar January 2009 (has links)
<p>Wireless Sensor Network is an emerging technology that has applicationsin Wireless Actuators, remote controlling, distribution of softwareupdates and distribution of parameters to sensor nodes. This projectwork basically covers the concept of macro-diversity. This is a situationin which several transmitters are used for transferring the same signal (inmulti-hop sensor networks) to check the increase in connected nodes orin network coverage. Transmitter macro-diversity increases the receivedsignal strength and thus increases the signal-to-noise ratio which resultsin a lower outage probability. To accomplish this task three differentstrategies have been simulated using thirteen different cases. Broadcastingis used when forming SFN of size one (strategy one) and uni-castingis used for forming SFNs of size two (strategy two) and size three (strategythree).In this project reference material has been gathered frombooks, journals and web sources; and MATLAB has been used as thesimulation tool in which codes are written in the M programming language.The algorithm works firstly by discovering all the nodes that areconnected directly with the Base Station through multi-hoping, afterwhich the second algorithm is applied to check how many more nodescan be reached by forming SFNs. A gain of up to 79% was observedusing strategy one and strategy two and up to 83% in strategy three.The results shows that strategy one (Forming SFNs using BroadcastingTechnique) is the best as more nodes can be reached (for different cases)than for the other two strategies (forming SFNs using uni-casting technique).</p>
2

Transmitter Macrodiversity in Multihop Sensor Networks

Saeed, Munawar January 2009 (has links)
Wireless Sensor Network is an emerging technology that has applicationsin Wireless Actuators, remote controlling, distribution of softwareupdates and distribution of parameters to sensor nodes. This projectwork basically covers the concept of macro-diversity. This is a situationin which several transmitters are used for transferring the same signal (inmulti-hop sensor networks) to check the increase in connected nodes orin network coverage. Transmitter macro-diversity increases the receivedsignal strength and thus increases the signal-to-noise ratio which resultsin a lower outage probability. To accomplish this task three differentstrategies have been simulated using thirteen different cases. Broadcastingis used when forming SFN of size one (strategy one) and uni-castingis used for forming SFNs of size two (strategy two) and size three (strategythree).In this project reference material has been gathered frombooks, journals and web sources; and MATLAB has been used as thesimulation tool in which codes are written in the M programming language.The algorithm works firstly by discovering all the nodes that areconnected directly with the Base Station through multi-hoping, afterwhich the second algorithm is applied to check how many more nodescan be reached by forming SFNs. A gain of up to 79% was observedusing strategy one and strategy two and up to 83% in strategy three.The results shows that strategy one (Forming SFNs using BroadcastingTechnique) is the best as more nodes can be reached (for different cases)than for the other two strategies (forming SFNs using uni-casting technique).
3

An experimental verification of single-frequency networks in multi-hop ad hoc networks

Mahdi, Rafid, Tobiasson, Pontus January 2016 (has links)
A multi-hop ad hoc network requires no infrastructure, like base stations or routers to function. This means that it can quickly be deployed and in movement, making it ideal for scenarios like natural disasters or battlefield communication. A single-frequency network (SFN) is the idea that transmitters can cooperate to send the same signals simultaneously over the same frequency channel, such that the signals are amplified. It was previously proposed that SFNs could be created in multi-hop ad hoc networks. According to simulations, this could improve the energy consumption, signal reachability, and data transfer rate. As this has only been simulated, the purpose of this project is to experimentally verify that SFN is attainable in a multi-hop ad hoc network, and to assess what the difficulties are of an actual implementation. The method involved synchronizing the transmission of two devices operating under the 802.11a standard. A multi-hop ad hoc network was created by changing the settings of the network interface cards. The devices used were mainly laptops and transmissions were monitored in Wireshark. The laptops were forced to send on one frequency channel to make interference possible, and identical packets were sent. Experiments were made to assess whether SFN was attained. The packet loss rate and distance were used to evaluate the results. The results suggest that a synchronized transmission off by less than 2 μs was attained. However, the error of these measurements were neither known nor approximable. This meant it was hard to know when a SFN was formed. The results indicate that SFN was attained, as the packet loss rate decreased significantly when employed. The effectiveness of SFN was hard to assess because the results were not comparable with the simulation values. The difficulty of an actual implementation is deemed to be the synchronization of transmissions.
4

IP Multicasting over DVB-T/T2/H and eMBMS using PARPS : Effect of the number of transmitters

Voladri, Ranjith Reddy January 2013 (has links)
With the advancement in the current wireless technology standards such as terrestrial digital video broadcasting systems (DVB-T, DVB-T2, and DVB-H) and the massive usage of the Internet over mobile devices, streaming of television channels in smart phones has become a necessary advancement for mobile users. As, UMTS dominating the entire mobile market globally and with the evolution of LTE, several mobile operators are working on an MBMS framework which will help to launch mobile TV services on respective operators. This paper deals with terrestrial and mobile TV with IP multicasting and broadcasting and is aimed to improve system spectral efficiency.  With the help of IP multicasting, the base station can be able to provide with significantly less spectrum by saving it from the channels which the user is not viewing currently. This case is analysed from several sets, called schemes of resource plan sets. The transmitter scheduling is dealt with by means of a Packet and Resource Plan Scheduling (PARPS) algorithm, and the simulated results are plotted in Matlab which assists in analysing the efficiency in the spectrum management and the coverage probability for the number of transmitters used for each scheme. The schemes are simulated in Matlab for different number of transmitters (2-7) in both the static and random model. The SFN schemes are offering greater coverage probability than MFN schemes, in all cases. Multicasting over Continuous Transmission Dynamic Single Frequency Network (CT-DSFN) offers a 1342% and 582% gain in Multi-user System Spectral Efficiency (MSSE) for 7 transmitters, from Broadcasting over MFN and Broadcasting over SFN respectively.  For 7 transmitters, Multicasting over CT-DSFN offers a 1213% and 428% gain in System Spectral Efficiency (SSE) from Broadcasting over MFN and Broadcasting over SFN respectively.

Page generated in 0.0319 seconds