Spelling suggestions: "subject:"multilevel data"" "subject:"multilevels data""
1 |
Impact of Ignoring Nested Data Structures on Ability EstimationShropshire, Kevin O'Neil 03 June 2014 (has links)
The literature is clear that intentional or unintentional clustering of data elements typically results in the inflation of the estimated standard error of fixed parameter estimates. This study is unique in that it examines the impact of multilevel data structures on subject ability which are random effect predictions known as empirical Bayes estimates in the one-parameter IRT / Rasch model. The literature on the impact of complex survey design on latent trait models is mixed and there is no "best practice" established regarding how to handle this situation. A simulation study was conducted to address two questions related to ability estimation. First, what impacts does design based clustering have with respect to desirable statistical properties when estimating subject ability with the one-parameter IRT / Rasch model? Second, since empirical Bayes estimators have shrinkage properties, what impacts does clustering of first-stage sampling units have on measurement validity-does the first-stage sampling unit impact the ability estimate, and if so, is this desirable and equitable?
Two models were fit to a factorial experimental design where the data were simulated over various conditions. The first model Rasch model formulated as a HGLM ignores the sample design (incorrect model) while the second incorporates a first-stage sampling unit (correct model). Study findings generally showed that the two models were comparable with respect to desirable statistical properties under a majority of the replicated conditions-more measurement error in ability estimation is found when the intra-class correlation is high and the item pool is small. In practice this is the exception rather than the norm. However, it was found that the empirical Bayes estimates were dependent upon the first-stage sampling unit raising the issue of equity and fairness in educational decision making. A real-world complex survey design with binary outcome data was also fit with both models. Analysis of the data supported the simulation design results which lead to the conclusion that modeling binary Rasch data may resort to a policy tradeoff between desirable statistical properties and measurement validity. / Ph. D.
|
2 |
Analysis of survey data in the presence of non-ignorable missing-data and selection mechanismsHammon, Angelina 04 July 2023 (has links)
Diese Dissertation beschäftigt sich mit Methoden zur Behandlung von nicht-ignorierbaren
fehlenden Daten und Stichprobenverzerrungen – zwei häufig auftretenden Problemen bei
der Analyse von Umfragedaten. Beide Datenprobleme können die Qualität der Analyseergebnisse erheblich beeinträchtigen und zu irreführenden Inferenzen über die Population führen. Daher behandle ich innerhalb von drei verschiedenen Forschungsartikeln,
Methoden, die eine Durchführung von sogenannten Sensitivitätsanalysen in Bezug auf
Missing- und Selektionsmechanismen ermöglichen und dabei auf typische Survey-Daten
angewandt werden können. Im Rahmen des ersten und zweiten Artikels entwickele ich Verfahren zur multiplen Imputation von binären und ordinal Mehrebenen-Daten, welche es zulassen, einen potenziellen Missing Not at Random (MNAR) Mechanismus zu berücksichtigen. In unterschiedlichen Simulationsstudien konnte bestätigt werden, dass die neuen Imputationsmethoden in der Lage sind, in allen betrachteten Szenarien unverzerrte sowie effiziente Schätzungen zuliefern. Zudem konnte ihre Anwendbarkeit auf empirische Daten aufgezeigt werden.
Im dritten Artikel untersuche ich ein Maß zur Quantifizierung und Adjustierung von nicht ignorierbaren Stichprobenverzerrungen in Anteilswerten, die auf der Basis von nicht-probabilistischen Daten geschätzt wurden. Es handelt sich hierbei um die erste Anwendung des Index auf eine echte nicht-probabilistische Stichprobe abseits der Forschergruppe, die das Maß entwickelt hat. Zudem leite ich einen allgemeinen Leitfaden für die
Verwendung des Index in der Praxis ab und validiere die Fähigkeit des Maßes vorhandene
Stichprobenverzerrungen korrekt zu erkennen.
Die drei vorgestellten Artikel zeigen, wie wichtig es ist, vorhandene Schätzer auf ihre Robustheit hinsichtlich unterschiedlicher Annahmen über den Missing- und Selektionsmechanismus zu untersuchen, wenn es Hinweise darauf gibt, dass die Ignorierbarkeitsannahme verletzt sein könnte und stellen erste Lösungen zur Umsetzung bereit. / This thesis deals with methods for the appropriate handling of non-ignorable missing
data and sample selection, which are two common challenges of survey data analysis.
Both issues can dramatically affect the quality of analysis results and lead to misleading
inferences about the population. Therefore, in three different research articles, I treat
methods for the performance of so-called sensitivity analyses with regards to the missing data and selection mechanism that are usable with typical survey data.
In the first and second article, I provide novel procedures for the multiple imputation
of binary and ordinal multilevel data that are supposed to be Missing not At Random
(MNAR). The methods’ suitability to produce unbiased and efficient estimates could be
demonstrated in various simulation studies considering different data scenarios. Moreover,
I could show their applicability to empirical data.
In the third article, I investigate a measure to quantify and adjust non-ignorable selection
bias in proportions estimated based on non-probabilistic data. In doing so, I provide
the first application of the suggested index to a real non-probability sample outside its
original research group. In addition, I derive general guidelines for its usage in practice,
and validate the measure’s performance in properly detecting selection bias.
The three presented articles highlight the necessity to assess the sensitivity of estimates
towards different assumptions about the missing-data and selection mechanism if it seems
realistic that the ignorability assumption might be violated, and provide first solutions to
enable such robustness checks for specific data situations.
|
Page generated in 0.0491 seconds