• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 58
  • 19
  • 12
  • 11
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 309
  • 73
  • 69
  • 49
  • 43
  • 38
  • 34
  • 34
  • 34
  • 33
  • 31
  • 29
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The Multipath Fault-Tolerant Protocol for Routing in Packet-Switched Communication Network

Krishnan, Anupama 05 1900 (has links)
In order to provide improved service quality to applications, networks need to address the need for reliability of data delivery. Reliability can be improved by incorporating fault tolerance into network routing, wherein a set of multiple routes are used for routing between a given source and destination. This thesis proposes a new fault-tolerant protocol, called the Multipath Fault Tolerant Protocol for Routing (MFTPR), to improve the reliability of network routing services. The protocol is based on a multipath discovery algorithm, the Quasi-Shortest Multipath (QSMP), and is designed to work in conjunction with the routing protocol employed by the network. MFTPR improves upon the QSMP algorithm by finding more routes than QSMP, and also provides for maintenance of these routes in the event of failure of network components. In order to evaluate the resilience of a pair of paths to failure, this thesis proposes metrics that evaluate the non-disjointness of a pair of paths and measure the probability of simultaneous failure of these paths. The performance of MFTPR to find alternate routes based on these metrics is analyzed through simulation.
122

Characterization and Mitigation of Hyper-Rayleigh Fading

Ketcham, Richard 30 November 2007 (has links)
Due to the unprecedented spatial and temporal resolution they offer, wireless sensor networks are considered an enabling technology for the distributed monitoring of industrial, military, and natural environments. As these systems migrate into vastly different and novel applications, new constraints are discovered that affect network reliability and utility. For example, wireless sensors are typically statically deployed and, unlike mobile systems, cannot move to a new location for better radio reception. As a result, the signal fades caused by non-optimal environmental conditions can increase the outage probability of the system, potentially rendering the network unreliable and ineffectual. Stochastic models that quantify link reliability and the effectiveness of diversity methods are often employed to understand the impact of such fading. However, the performance of these models applied to wireless sensor networks is entirely dependent on the appropriateness of the model with respect to the environment. This work first presents an empirical study of the propagation environment for a wingless, rotary aircraft, showing that the wireless environment within exhibits frequency-selective fading much more severe than predicted by current worst-case models (i.e., Rayleigh). An analysis is then given of the effectiveness of several diversity methods operating within such environments (referred to as hyper-Rayleigh). These fade mitigation techniques are simple enough to be employed for use with low-complexity wireless sensor hardware, and include spatial diversity, polar diversity, two-element passive combining, and two-element phased combining. Two-element phased combining is further developed by examining the effect that smaller element spacing has on diversity gain. A demonstration of a wireless
123

Des spanneurs aux spanneurs multichemins / From spanners to multipath spanners

Godfroy, Quentin 29 November 2012 (has links)
Cette thèse traite de l'étude des spanneurs multichemins, comme extension des spanneurs de graphes classiques. Un spanneur H d'un graphe G est un sous-graphe couvrant tel que pour toute paire de sommets du graphe a,b « appartient à » V(G) la distance dans le spanneur dh(a,b) n'est pas trop étirée par rapport à la distance dans le graphe d'origine dg(a,b). Ainsi il existe un facteur d'étirement (alpha, beta) tel que pour tout a,b« appartient à »V(G), dh(a,b)« est inférieur ou égal à » alpha dg(a,b)+beta. Motivés par des considérations de routage à plusieurs chemins et après la remarque que le concept de spanneur peut être étendu à toute métrique « non décroissante », nous introduisons la notion de spanneur multichemins. Après une introduction au domaine, nous parlerons des résultats obtenus concernant d'une part les spanneurs multichemins arêtes disjoints et d'autre part les spanneurs multichemins sommets disjoints. / This thesis deals with multipath spanners, as an extension of classical graph spanners. A spanner H of a graph G is a spanning subgraph such that for any pair of vertices a,b « is an element of » V(G) the distance measured in the spanner dh(a,b) isn't too much stretched compared to the distance measured in the original graph dg(a,b). As such there exists a stretch factor (alpha, beta) such that for all a,b« is an element of »V(G), dh(a,b)«is less than or equal to » alpha dg(a,b)+beta. Motivated by multipath routing and after noting that the concept of spanner can be extended to any “non decreasing” metric, we introduce the notion of multipath spanner. After an introduction to the topic, we will show the results obtained. The first part is devoted to edge-disjoint multipath spanners. The second part id devoted to vertex-disjoint spanners.
124

Latency Reduction for Soft Real-Time Traffic using SCTP Multihoming

Eklund, Johan January 2016 (has links)
More and more so-called soft real-time traffic is being sent over IP-based networks. The bursty, data-limited traffic pattern as well as the latency requirements from this traffic present challenges to the traditional communication techniques, designed for bulk traffic without considering latency. To meet the requirements from soft real-time traffic, in particular from telephony signaling, the Stream Control Transmission Protocol (SCTP) was designed. Its support for connectivity to multiple networks, i.e., multihoming, provides robustness and opens up for concurrent multipath transfer (CMT) over multiple paths. Since SCTP is a general transport protocol, it also enables for handover of media sessions between heterogeneous networks. Migrating an ongoing session to a new network, as well as CMT with minimal latency, requires tuning of several protocol parameters and mechanisms. This thesis addresses latency reduction for soft real-time traffic using SCTP multihoming from three perspectives. The first focus is on latency for signaling traffic in case of path failure, where a path switch, a failover, occurs. We regard quick failure detection as well as rapid startup on the failover target path. The results indicate that by careful parameter tuning, the failover time may be significantly reduced. The second focus in the thesis is on latency for signaling traffic using CMT. To this end, we address sender-side scheduling. We evaluate some existing schedulers, and design a dynamic stream-aware scheduler. The results indicate that the dynamic stream-aware scheduler may provide significantly improved latency in unbalanced networks. Finally, we target multihomed SCTP to provide for handover of a media session between heterogeneous wireless networks in a mobile scenario. We implement a handover scheme and our investigation shows that SCTP could provide for seamless handover of a media session at walking speed. / So-called soft real-time traffic may be sent over IP-based networks. The bursty, data-limited traffic pattern and the latency requirements from this traffic present a challenge to traditional communication techniques. The Stream Control Transmission Protocol (SCTP), with support for multihoming, was designed to better meet the requirements from soft-real time traffic. Multihoming provides for robustness and for concurrent multipath transfer (CMT) as well as for handover of sessions between heterogeneous networks. Still, to meet the timeliness requirements, tuning of protocol parameters and mechanisms is crucial. This thesis addresses latency reduction for soft real-time traffic using SCTP multihoming. The first focus is on signaling traffic in case of path failure, where a path switch, a failover, occurs. We show that careful parameter tuning may reduce the failover time significantly. The second focus is on signaling traffic using CMT. We address sender-side scheduling and show that dynamic stream-aware scheduling may reduce latency when data is transmitted over asymmetric network  paths. The third focus is multihomed SCTP for handover between heterogeneous networks, where we show that SCTP could provide for seamless handover of a media session at walking speed. / <p>Paper 3 (Efficient Scheduling to Reduce Latency...) ingick i avhandlingen som manuskript med samma namn.</p>
125

A Study of Multipath Propagation and Doppler Effect at 24GHz ISM band

Rana, Shaikh Masud January 2020 (has links)
The wideband channel has been analyzed at the University of Gävle by using millimeter-wave (mm-Wave) frequency for improving the fifth-generation (5G) in Radio-frequency (RF) characterization. The proposed mm-Wave frequency is 24GHz, which is carried out from measurement testbed at the Robotics Lab. To explore the channel behaviors of the ISM band and mobile radio, three typically environments have been created inside of the Robotics Lab at the University of Gävle in which are Higher reflection (HR), natural reflection (NR), and Ultra reflection (UR). The relative motion of the transmitter (Tx) is carried out by adjoining the omnidirectional antenna to a KUKA robot's arm inside the Robotics lab at the University of Gävle, Sweden. The radio channel behavior is observed at different circumstances with two different movements of KUKA’s arm e.g., higher speed (2m/s) and slower speed (1m/s) for the Line of sight (LOS) and Non-Line of sight (NLOS) condition. We then achieve the time-varying power delay profile (PDP) and frequency-varying Doppler spectral density (DSD) from scattering components of the experiment environment. The Wide-band channel characteristics have been based on the (PDP) and (DSD), we analyze the root-mean-square of the (RMS) delay spread, RMS Doppler spread, Coherence time, Coherence bandwidth, and mean delay, Doppler shift from 24 different scenarios for behaviors of the mobile radio channels and indoor wireless application. / <p>Actually, My thesis title is '' A Study of Multipath Propagation and Doppler Effect at 24GHz ISM band''. I have generated mm-wave frequency from my testbed which is 24GHz. For better analysis, i was designed and created a Multipath environment inside of the  Robotics Lab at University of Gävle, I also used KUKA Robot and designed two diffrient motion for the Transmitter,such as ''C'' type and '' inverse ''type .</p>
126

Étude d'algorithmes de poursuite du signal GNSS permettant d'améliorer le positionnement en environnement urbain / New adaptive tracking loop algorithm for reliable positioning in harsh environment

Bin Syed Mohd Dardin, Syed Mohd Fairuz 19 June 2015 (has links)
Cette activité de recherche concerne le domaine de la navigation par satellite qui utilise lessystèmes GNSS (Global Navigation Satellite Systems). Elle vise à améliorer les performances globalesd’un système de navigation, c’est à dire la robustesse, la disponibilité et l’intégrité d’un récepteurutilisant les signaux GNSS pour élaborer sa position et sa vitesse. L’enjeu est important et on noteque les représentations des nouveaux signaux proposés pour GPS et GALILEO visent à diminuer lacorrélation entre les signaux, faciliter la poursuite de ces signaux en abaissant le niveau des seuils depoursuite, réduire l’effet des interférences. La navigation basée sur les signaux GNSS reste toutefoisdépendante du canal de propagation et est particulièrement affectée en cas réflexion, réfraction,diffraction, diffusion, et de blocage du signal émis par le satellite. Il en résulte une dégradationimportante des performances en environnement urbain. L’objectif de cette recherche est ainsi deproposer, d’analyser et de caractériser des architectures de récepteur robuste, permettantd’adresser efficacement le problème de la navigation dans des environnements difficiles où le signalGNSS est affecté par de fortes perturbations. De nombreux travaux de recherche visant à améliorer les performances des algorithmes de poursuite du signal au sein d’un récepteur ont été conduites, en particulier pour adresser leproblème de cette poursuite dans des environnements difficiles, en présence de multi-trajets. Lesapproches les plus connues traitent le signal de post-corrélation. Ainsi l’utilisation de corrélateursétroits permet de réduire l’impact des multi-trajets générant un retard important. De même destechniques utilisant un banc de corrélateurs pour estimer les paramètres des multi-trajets ont étéétudiées. La présence de multi-trajets demeure toutefois une importante source d’erreur pour desrécepteurs opérant en environnement urbain. L’amélioration des performances des récepteurs dansce contexte reste un enjeu important et de nombreuses études sont conduites en vue d’améliorer ladisponibilité, la robustesse, la fiabilité et l’intégrité de ces récepteurs. Le principal objectif de cette thèse est de proposer une architecture de poursuite adaptive exploitant des techniques de poursuite vectorielle (Vector Tracking Loop – VTL). Les récepteurs conventionnels utilisent une architecture directe où une poursuite scalaire du signal (Scalar TrackingLoop – STL) est réalisée en amont du navigateur. Cette architecture n’utilise pas les informationsélaborées par le navigateur pour améliorer les performances de la poursuite. Au contrairel’architecture vectorielle permet à la poursuite de bénéficier de la connaissance de la position et dela vitesse estimées par le récepteur. Il peut en résulter une dégradation de la poursuite lorsque le navigateur ne sait pas isoler une mesure contaminée. Cet architecture rend donc les performances d’un canal très dépendantes des mesures utilisées par le navigateur, et donc en particulier des autres canaux. L’approche qui est explorée ici vise à combiner les approches de poursuite STL et VTL pour améliorer les performances des récepteurs en environnement urbain, dans un contexte multiconstellation. / Present research activities in the field of Global Navigation Satellite Systems (GNSS) aim atenhancing the overall navigation performance by providing better and more robust navigationsignals compared the ones available today. These GNSS signals are designed to provide betterimproved cross-correlation protection, lower tracking thresholds and reduced susceptibility tonarrow band interferences. However navigation based on GNSS signals remains sensitive topropagation impairments such as reflection, refraction, diffraction and scattering, and sometimesblockage of the line of sight signals. These effects are especially important in urban environment.Therefore, a better and more robust receiver design and implementation is crucial to meet anappropriate navigation performance using GNSS signals. Improving signal tracking algorithms inside the receiver is an attractive approach. This is particularly true in the case of urban environments where interference and multipath severely degrade the performance of the GPS positioning. Despite the many efforts of performance enhancement, multipath still remains as the dominant source of error and the limiting factor for many applications. Consequently improving the performance of a receiver in multipath environment is a great challenge and many studies are carried out to satisfy the above requirements in term of availability, reliability and integrity. The main goal of this PhD thesis is to propose a new adaptive tracking algorithm based on vector tracking loop (VTL) approach. Currently, the conventional technique (i.e., Scalar Tracking Loop (STL)) is implemented in a forward-only strategy which doesn’t exploit the position, velocity and time (PVT) solution provided by the Navigation System (NS). Standard VTL on the other hand, suffers from measurements contamination from the exploitation of PVT provided by the NS. This adaptiveapproach will take advantage of both tracking methods for providing reliable measurements in amulti-constellation context.
127

A Survey of Sparse Channel Estimation in Aeronautical Telemetry

Hogstrom, Christopher James 01 June 2017 (has links)
Aeronautical telemetry suffers from multipath interference, which can be resolved through the use of equalizers at the receiver. The coefficients of data-aided equalizers are computed from a channel estimate. Most channels seen in aeronautical telemetry are sparse, meaning that most of the coefficients of the channel are zero or nearly zero. The maximum likelihood (ML) estimate does not always produce a sparse channel estimate. This thesis surveys a number of sparse estimation algorithms that produce a sparse channel estimate and compares the post-equalizer bit error rates (BER) using these sparse estimates with the post-equalizer BER using the ML estimate. I show that the generalized Orthogonal Matching Pursuit (GOMP) performs the best followed by the Sparse Estimation based on Validation Re-estimated Least Squares (SPARSEVA-RE) and the Least Absolute Shrinkage and Selection Operator (LASSO).
128

Multipath Channel Considerations in Aeronautical Telemetry

Gagakuma, Edem Coffie 01 May 2017 (has links)
This thesis describes the use of scattering functions to characterize time-varying multipath radio channels. Channel Impulse responses were measured at Edwards Air Force Base (EAFB) and scattering functions generated from the impulse response data. From the scattering functions we compute the corresponding Doppler power spectrum and multipath intensity profile. These functions completely characterize the signal delay and the time varying nature of the channel in question and are used by systems engineers to design reliable communications links. We observe from our results that flight paths with ample reflectors exhibit significant multipath events. We also examine the bit error rate (BER) performance of a reduced-complexity equalizer for a truncated version of the pulse amplitude modulation (PAM) representation of SOQPSK-TG in a multipath channel. Since this reduced-complexity equalizer is based on the maximum likelihood (ML) principle, we expect it to perform optimally than any of the filter-based equalizers used in estimating received SOQPSK-TG symbols. As such we present a comparison between this ML detector and a minimum mean square error (MMSE) equalizer for the same example channel. The example channel used was motivated by the statistical channel characterizations described in thisthesis. Our analysis shows that the ML equalizer outperforms the MMSE equalizer in estimating received SOQPSK-TG symbols.
129

SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO SELECTED NETWORK FLOWS

Alharbi, Faisal 01 January 2018 (has links)
Despite the huge success and adoption of computer networks in the recent decades, traditional network architecture falls short of some requirements by many applications. One particular shortcoming is the lack of convenient methods for providing quality of service (QoS) guarantee to various network applications. In this dissertation, we explore new Software-Defined Networking (SDN) mechanisms to provision QoS to targeted network flows. Our study contributes to providing QoS support to applications in three aspects. First, we explore using alternative routing paths for selected flows that have QoS requirements. Instead of using the default shortest path used by the current network routing protocols, we investigate using the SDN controller to install forwarding rules in switches that can achieve higher bandwidth. Second, we develop new mechanisms for guaranteeing the latency requirement by those applications depending on timely delivery of sensor data and control signals. The new mechanism pre-allocates higher priority queues in routers/switches and reserves these queues for control/sensor traffic. Third, we explore how to make the applications take advantage of the opportunity provided by SDN. In particular, we study new transmission mechanisms for big data transfer in the cloud computing environment. Instead of using a single TCP path to transfer data, we investigate how to let the application set up multiple TCP paths for the same application to achieve higher throughput. We evaluate these new mechanisms with experiments and compare them with existing approaches.
130

Multipath approaches to avoiding TCP Incast

Song, Lin 01 May 2017 (has links)
TCP was conceived to ensure reliable node-to-node communication in moderate-bandwidth, moderate-latency, WANs. As it is now a mature Internet standard, it is the default connection-oriented protocol in networks built from commodity components, including Internet data centers. Data centers, however, rely on high-bandwidth, low-latency networks for communication. Moreover, their communication patterns, especially those generated by distributed applications such as MapReduce, often take the form of synchronous multi-node to node bursts. Under the right conditions, the network switch buffer overflow losses induced by these bursts confuse TCP's feedback mechanisms to the point that TCP throughput collapses. This collapse, termed TCP Incast, results in gross underutilization of link capacities, significantly degrading application performance. Conventional approaches to mitigating Incast have focused on single-path solutions, for instance, adjusting TCP's receive windows and timers, modifying the protocol itself, or adopting explicit congestion notifications. This thesis explores complementary multi-path approaches to avoiding Incast's onset. The principal idea is to use the regularity and high connectivity of typical data center networks, such as the increasingly popular fat-tree topology, to better distribute multi-node to node bursts across the available paths, thereby avoiding the switch buffer overflows that induce TCP Incast. The thesis's main contributions are: (1) development of new oblivious, multi-path, routing schemes for fat-tree networks, (2) derivation of relations between the schemes and Incast's onset, and (3) investigation of a novel "front-back" approach to minimizing the packet reordering introduced by multipath routing. Formal analyses are focused on relating schemes' worst-case loading of certain network resources - expressed as oblivious performance ratios (OPRs) - to Incast's onset. Potential benefits are assessed through ns-3 simulations on fat-trees under a variety of communication patterns. Results indicate that over a variety of experimental conditions, the proposed schemes reduce the incidence of TCP Incast compared to standard routing schemes.

Page generated in 0.0351 seconds