Spelling suggestions: "subject:"multiphase flow"" "subject:"multiphases flow""
141 |
Computer simulation of general systems of interlinked multistaged separatorsChan, Willie K. January 1982 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Chemical Engineering, 1982 / Bibliography: leaves 59-60. / by Willie K. Chan. / M.S. / M.S. Massachusetts Institute of Technology, Department of Chemical Engineering
|
142 |
Development Of A Computationally Inexpensive Method Of Simulating Primary Droplet BreakupCavainolo, Brendon A 01 January 2020 (has links)
Liquid droplet impingement on aircraft can be problematic as it leads to ice accretion. There have been many incidents of aircraft disasters involving ice accretion, such as American Eagle Flight 4184. Understanding liquid droplet impingement is critical in designing aircraft that can mitigate the damages caused by icing. However, the FAA's regulations are only specified for "Appendix C" droplets; thus, aircraft designs may not be safe when accounting for droplets such as Supercooled Large Droplets. The assumptions of many models, such as the Taylor-Analogy Breakup (TAB) model, are no longer accurate for Supercooled Large Droplets, and the physics of those models break down. Computational modeling is used to simulate droplets in the SLD regime. A Lagrangian reference frame is used in this formulation. In this reference frame, a Volume of Fluid variation of the Navier-Stokes equations is used to resolve and isolate a single droplet. Experimental data shows conflicting results for Weber Number ranges in different primary breakup mechanisms. The goal of this research is to develop a computational model of a water droplet and test it against experimental data. This work shows that the scientific consensus on Weber Number ranges for different breakup modes may not necessarily be accurate, as the computational model agrees with some sets of experimental data, but contradicts others.
|
143 |
Experimental and numerical studies of solid-liquid multiphase flow in pipesChen, Rong-Che January 1991 (has links)
No description available.
|
144 |
Prediction of Pressure Drop in Vertical Air/Water Flow in the Presence/Absence of Sodium Dodecyl Sulfate as a SurfactantBiria, Saeid 30 August 2013 (has links)
No description available.
|
145 |
Flow Patterns in Vertical Air/Water Flow With and Without SurfactantZhou, Jing 30 August 2013 (has links)
No description available.
|
146 |
Mass transfer effect in multiphase flow and their influence on corrosionJiang, Lei January 2001 (has links)
No description available.
|
147 |
Slug flow characteristics and corrosion rates in inclined high pressure multiphase flow pipesMaley, Jeff January 1997 (has links)
No description available.
|
148 |
Modeling the Effect of Particle Diameter and Density on Dispersion in an Axisymmetric Turbulent JetSebesta, Christopher James 17 May 2012 (has links)
Creating effective models predicting particle entrainment behavior within axisymmetric turbulent jets is of significant interest to many areas of study. Research into multiphase flows within turbulent structures has primarily focused on specific geometries for a target application, with little interest in generalized cases. In this research, the entrainment characteristics of various particle sizes and densities were simulated by determining the distribution of particles across a surface after the particles had fallen out of entrainment within the jet core. The model was based on an experimental set-up created by Lieutenant Zachary Robertson, which consists of a particle injection system designed to load particles into a fully developed pipe [1]. This pipe flow then exits into an otherwise quiescent environment (created within a wind tunnel), creating an axisymmetric turbulent round jet. The particles injected were designed to test the effect of both particle size and density on the entrainment characteristics.
The data generated by the model indicated that, for all particle types tested, the distribution across the bottom surface of the wind tunnel followed a standard Gaussian distribution. Experimentation yielded similar results, with the exception that some of the experimental trials showed distributions with significantly non-zero skewness. The model produced results with the highest correlation to experimentation for cases with the smallest Stokes number (small size/density), indicating that the trajectory of particles with the highest level of interaction with the flow were the easiest to predict. This was contrasted by the high Stokes number particles which appear to follow standard rectilinear motion. / Master of Science
|
149 |
Computational Simulation of Coal Gasification in Fluidized Bed ReactorsSoncini, Ryan Michael 24 August 2017 (has links)
The gasification of carbonaceous fuel materials offers significant potential for the production of both energy and chemical products. Advancement of gasification technologies may be expedited through the use of computational fluid dynamics, as virtual reactor design offers a low cost method for system prototyping. To that end, a series of numerical studies were conducted to identify a computational modeling strategy for the simulation of coal gasification in fluidized bed reactors.
The efforts set forth by this work first involved the development of a validatable hydrodynamic modeling strategy for the simulation of sand and coal fluidization. Those fluidization models were then applied to systems at elevated temperatures and polydisperse systems that featured a complex material injection geometry, for which no experimental data exists. A method for establishing similitude between 2-D and 3-D multiphase systems that feature non-symmetric material injection were then delineated and numerically tested.
Following the development of the hydrodynamic modeling strategy, simulations of coal gasification were conducted using three different chemistry models. Simulated results were compared to experimental outcomes in an effort to assess the validity of each gasification chemistry model. The chemistry model that exhibited the highest degree of agreement with the experimental findings was then further analyzed identify areas of potential improvement. / Ph. D. / Efficient utilization of coal is critical to ensuring stable domestic energy supplies while mitigating human impact on climate change. This idea may be realized through the use of gasification systems technologies. The design and planning of next-generation coal gasification reactors can benefit from the use of computational simulations to reduce both development time and cost. This treatise presents several studies where computational fluid dynamics was applied to the problem of coal gasification in a bubbling fluidized bed reactor with focuses on accurate tracking of solid material locations and modeling of chemical reactions.
|
150 |
Multiphase flow and mass transport through porous mediaSnyder, Kevin P. 17 January 2009 (has links)
The migration of organic contaminants in the subsurface, due to leaking underground storage tanks, includes both discrete and dissolved phase plume movements through the porous media. Such problems always involve the multiphase flow and mass transport through three phases, namely air, oil, and water. A finite element model is developed in this thesis based on the theory of multiphase flow weakly-coupled with the theory of mass transport, in a three-dimensional setting. Galerkin's method is employed to derive the finite element formulations for multiphase flow and mass transport based on the appropriate governing differential equations. The equations for multiphase flow are based on van Genuchten's model for unsaturated flow for air and water. In this model, the saturation-pressure-conductivity relations are used to obtain the constitutive behavior. The solution procedure of the resulting time dependent nonlinear equation involves using a general 0-scheme, for time integration, and a modified Picard's method, for nonlinear iteration. The governing equation for mass transport in a three-phase system is derived based on the assumption of linear partitioning between the air, oil, water, and solid phases. The equations for flow and transport are weakly-coupled through the time lagged interphase mass transfer term. A computer program called IMFTP3D is developed. The program can solve problems related to (1) multiphase immiscible flow, (2) diffusion without flow, and (3) multiphase flow weakly-coupled with mass transport. The three-dimensional model is validated for all three options based on previous two-dimensional models and laboratory experiments present in the literature.
Laboratory experiments where conducted involving gasoline movements through both a one-dimensional column and a two-dimensional flume. The computer program, IMFTP3D, was then used to investigate the usefulness of the model in predicting water outflow in for the column problem and plume movements in the flume experiment. / Master of Science
|
Page generated in 0.0745 seconds