• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Operability analysis of a multiple-stage membrane process

Yee, Kevin Wing Kan, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Membrane processes have found increasing industrial applications worldwide. For membrane processes to deliver their desired performances and mitigate the effect of disturbances, automatic controllers must be installed. Before the installation of controllers, operability analysis is a crucial step to evaluate how well the processes can be controlled, and to determine how process design can be improved for better control. However, existing applications of operability analysis in membrane processes are limited. This thesis extends the application of operability analysis to a multiple-stage membrane process, exemplified by a detailed case study of a 12-stage industrial whey ultrafiltration (UF) process. Process dynamic models are determined to describe the transient behaviour of process performance caused by disturbances and long-term fouling. Steady-state nonlinear operability analysis is conducted to identify inherent limitations of the process. Using the process dynamic models, dynamic operability analysis is performed to determine the effects of dynamic behaviour on process and controller design. Steady-state operability analysis shows that the whey UF process is not able to mitigate the effects of high concentrations of true protein in the fresh whey feed. The ability of the process to mitigate the effects of disturbances is also adversely affected by long-term membrane fouling. Mid-run washing is therefore necessary to restore control performance after long periods of operation. Besides demonstrating the adverse effects of long-term membrane fouling on operability, dynamic operability analysis identifies the manipulated variables that can deliver the best control performance. It also indicates that control performance can be improved by installing equipment (e.g. buffer tanks) upstream of the process. Dynamic operability analysis shows that recycling of the retentate stream has a profound effect on the plant-wide dynamics and reduces significantly the achievable speed of process response under automatic control. However, retentate recycling is essential during operation to minimize membrane fouling. Although reducing the number of stages in the whey UF process can improve the achievable speed of process response under automatic control, process performance will fluctuate significantly from its desired level. A trade-off therefore exists between process performance and control performance that should be addressed during process and controller design.
2

Operability analysis of a multiple-stage membrane process

Yee, Kevin Wing Kan, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Membrane processes have found increasing industrial applications worldwide. For membrane processes to deliver their desired performances and mitigate the effect of disturbances, automatic controllers must be installed. Before the installation of controllers, operability analysis is a crucial step to evaluate how well the processes can be controlled, and to determine how process design can be improved for better control. However, existing applications of operability analysis in membrane processes are limited. This thesis extends the application of operability analysis to a multiple-stage membrane process, exemplified by a detailed case study of a 12-stage industrial whey ultrafiltration (UF) process. Process dynamic models are determined to describe the transient behaviour of process performance caused by disturbances and long-term fouling. Steady-state nonlinear operability analysis is conducted to identify inherent limitations of the process. Using the process dynamic models, dynamic operability analysis is performed to determine the effects of dynamic behaviour on process and controller design. Steady-state operability analysis shows that the whey UF process is not able to mitigate the effects of high concentrations of true protein in the fresh whey feed. The ability of the process to mitigate the effects of disturbances is also adversely affected by long-term membrane fouling. Mid-run washing is therefore necessary to restore control performance after long periods of operation. Besides demonstrating the adverse effects of long-term membrane fouling on operability, dynamic operability analysis identifies the manipulated variables that can deliver the best control performance. It also indicates that control performance can be improved by installing equipment (e.g. buffer tanks) upstream of the process. Dynamic operability analysis shows that recycling of the retentate stream has a profound effect on the plant-wide dynamics and reduces significantly the achievable speed of process response under automatic control. However, retentate recycling is essential during operation to minimize membrane fouling. Although reducing the number of stages in the whey UF process can improve the achievable speed of process response under automatic control, process performance will fluctuate significantly from its desired level. A trade-off therefore exists between process performance and control performance that should be addressed during process and controller design.
3

Simulation and implementation of nonlinear control systems for mineral processes.

Kam, Kiew M. January 2000 (has links)
Differential geometric nonlinear control of a multiple stage evaporator system of the liquor burning facility associated with the Bayer process for alumina production at Alcoa Wagerup alumina refinery, Western Australia was investigated.Mathematical models for differential geometric analysis and nonlinear controller synthesis for the evaporator system were developed. Two models, that were structurally different from each other, were used in the thesis for simulation studies. Geometric nonlinear control structure, consisting of nonlinear state feedback control laws and multi-loop single-input single-output proportional-integral controllers, were designed for the industrial evaporator system. The superiority of the geometric nonlinear control structure for regulatory control of the evaporator system was successfully demonstrated through computer simulations and real-time simulator implementation. The implementation trial has verified the practicality and feasibility of these type of controllers. It also re-solved some practical issues of the geometric nonlinear control structure for industrial control applications. In addition, the implementation trial also established a closer link between the academic nonlinear control theory and the industrial control practices.Geometric nonlinear output feedback controller, consisting of the geometric nonlinear control structure and reduce-order observer was proposed for actual plant implementation on the evaporator system on-site. Its superior performance was verified through computer simulations, but its feasibility on the evaporator system on-site has yet to be investigated either through simulator implementation or actual plant implementation. This investigation was not performed due to the time constraint on the preparation of this thesis and the inavailability of the plant personnel required for this implementation.Robust ++ / nonlinear control structures that are simple and computationally efficient have been proposed for enhancing the performance of geometric nonlinear controllers in the presence of plant/model mismatch and/or external disturbances. The robust nonlinear control structures are based on model error compensation methods. Robustness properties of the proposed robust nonlinear control structures on the evaporator system were investigated through computer simulations and the results indicated improved performance over the implemented geometric nonlinear controller in terms of model uncertainty and disturbance reductions.A software package was developed in MAPLE computing environment for the analysis of nonlinear processes and the design of geometric nonlinear controllers. This developed symbolic package is useful for obtaining fast and exact solutions for the analysis and design of nonlinear control systems. Procedures were also developed to simulate the geometric nonlinear control systems. It was found that MAPLE, while it is superior for the analyses and designs, is not viable for simulations of nonlinear control systems. This was due to limitation of MAPLE on the physical, or virtual, memory management. The use of both symbolic and numeric computation for solutions of nonlinear control system analysis, design and simulation is recommended.To sum up, geometric nonlinear controllers have been designed for an industrial multiple stage evaporator system and their simplicity, practicality, feasibility and superiority for industrial control practices have been demonstrated either through computer simulations or real-time implementation. It is hoped that the insights provided in this thesis will encourage more industry-based projects in nonlinear control, and thereby assist in closing the widening gap between academic nonlinear control theory and industrial control ++ / practice.Keywords: geometric nonlinear control, input-output linearization, multiple stage evaporator, robust geometric nonlinear control, control performance enhancement.
4

Single- and Multiple-Stage Cascaded Vapor Compression Refrigeration for Electronics Cooling

Coggins, Charles Lee 09 May 2007 (has links)
The International Technology Roadmap for Semiconductors (ITRS) predicts that microprocessor power consumption will continue to increase in the foreseeable future. It is also well known that microprocessor performance can be improved by lowering the junction temperature: recent analytical studies show that for a power limited chip, there is a non-linear scaling effect that offers a 4.3x performance enhancement at -100 °C, compared to 85 °C operation. Vapor Compression Refrigeration (VCR) is a sufficiently compact, low cost, and power efficient technology for reducing the junction temperature of microprocessors below ambient, while removing very high heat fluxes via phase change. The current study includes a scaling analysis of single- and multiple-stage VCR systems for electronics cooling and an experimental investigation of small-scale, two-stage cascaded VCR systems. In the scaling analysis, a method for estimating the size of single- and multiple-stage VCR systems is described, and the resulting trends are presented. The compressor and air-cooled condenser are shown to be by far the largest components of the system, dwarfing the evaporator, expansion device, and inter-stage heat exchanger. For systems utilizing off-the-shelf components and removing up to 200 W at evaporator temperatures as low as 173 K, compressor size dominates the system and scales with the compressor s motor. The air-cooled condenser is the second largest component, and its size is constrained by the air-side heat transfer coefficient. In the experimental work, a two-stage cascaded VCR system with a total volume of 60000 cm3 is demonstrated that can remove 40 W at -61 °C.

Page generated in 0.0516 seconds