• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single- and Multiple-Stage Cascaded Vapor Compression Refrigeration for Electronics Cooling

Coggins, Charles Lee 09 May 2007 (has links)
The International Technology Roadmap for Semiconductors (ITRS) predicts that microprocessor power consumption will continue to increase in the foreseeable future. It is also well known that microprocessor performance can be improved by lowering the junction temperature: recent analytical studies show that for a power limited chip, there is a non-linear scaling effect that offers a 4.3x performance enhancement at -100 °C, compared to 85 °C operation. Vapor Compression Refrigeration (VCR) is a sufficiently compact, low cost, and power efficient technology for reducing the junction temperature of microprocessors below ambient, while removing very high heat fluxes via phase change. The current study includes a scaling analysis of single- and multiple-stage VCR systems for electronics cooling and an experimental investigation of small-scale, two-stage cascaded VCR systems. In the scaling analysis, a method for estimating the size of single- and multiple-stage VCR systems is described, and the resulting trends are presented. The compressor and air-cooled condenser are shown to be by far the largest components of the system, dwarfing the evaporator, expansion device, and inter-stage heat exchanger. For systems utilizing off-the-shelf components and removing up to 200 W at evaporator temperatures as low as 173 K, compressor size dominates the system and scales with the compressor s motor. The air-cooled condenser is the second largest component, and its size is constrained by the air-side heat transfer coefficient. In the experimental work, a two-stage cascaded VCR system with a total volume of 60000 cm3 is demonstrated that can remove 40 W at -61 °C.
2

Design and Construction of a Sub-Ambient Direct-on-Chip Liquid Cooling System for Data Center Servers

Cavallin, Christopher January 2022 (has links)
Sub-ambient direct-on-chip liquid cooling is an emerging technology in the data center industry. The risk of an electrically conductive liquid leaking out to the electrical components and damaging the servers has been the major factor in holding back the use of liquid cooling historically. This technology effectively removes that risk. A direct-on-chip liquid cooling system, where average system pressure and average CPU temperatures can be fixed for a range of server computing loads and coolant supply temperatures for data center servers has been designed and constructed. This has been used to determine what impact pressure has on a small-scale liquid cooled server system in terms of CPU power consumption and CPU temperatures. The cooling system was only able to work with one server connected. Experiments with different values for the CPU temperature setpoint, coolant supply temperature setpoint, server computational load, and server pressure were executed to verify that the system works as intended. Applying a range of CPU computing loads works well, maintaining fixed average CPU temperatures works, with differences between the CPUs at higher temperatures and failure to reach average CPU temperatures when the difference between these and the coolant supply temperature is small. Maintaining fixed average pressure before the server works well, while pressure after the server is heavily affected by coolant flow. However, this effect is not seen as important for the experimental goals of the thesis. Maintaining a fixed coolant supply temperature works well with some slow fluctuations around the setpoint. No noticeable effects from pressure on CPU power consumption and CPU temperatures were seen. However, lower flow resistance was seen by the circulating pump when negative system pressure was lower which implies that less pump energy is needed to pump at lower negative pressure. The pressure was not in the region where the coolant could phase change during the experiments.

Page generated in 0.0558 seconds