• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single- and Multiple-Stage Cascaded Vapor Compression Refrigeration for Electronics Cooling

Coggins, Charles Lee 09 May 2007 (has links)
The International Technology Roadmap for Semiconductors (ITRS) predicts that microprocessor power consumption will continue to increase in the foreseeable future. It is also well known that microprocessor performance can be improved by lowering the junction temperature: recent analytical studies show that for a power limited chip, there is a non-linear scaling effect that offers a 4.3x performance enhancement at -100 °C, compared to 85 °C operation. Vapor Compression Refrigeration (VCR) is a sufficiently compact, low cost, and power efficient technology for reducing the junction temperature of microprocessors below ambient, while removing very high heat fluxes via phase change. The current study includes a scaling analysis of single- and multiple-stage VCR systems for electronics cooling and an experimental investigation of small-scale, two-stage cascaded VCR systems. In the scaling analysis, a method for estimating the size of single- and multiple-stage VCR systems is described, and the resulting trends are presented. The compressor and air-cooled condenser are shown to be by far the largest components of the system, dwarfing the evaporator, expansion device, and inter-stage heat exchanger. For systems utilizing off-the-shelf components and removing up to 200 W at evaporator temperatures as low as 173 K, compressor size dominates the system and scales with the compressor s motor. The air-cooled condenser is the second largest component, and its size is constrained by the air-side heat transfer coefficient. In the experimental work, a two-stage cascaded VCR system with a total volume of 60000 cm3 is demonstrated that can remove 40 W at -61 °C.
2

[en] APPLICATION OF NANOFLUIDS IN SECONDARY REFRIGERATION SYSTEMS / [pt] APLICAÇÃO DE NANOFLUIDOS EM SISTEMAS SECUNDÁRIOS DE REFRIGERAÇÃO

YIPSY ROQUE BENITO 01 October 2012 (has links)
[pt] É estudada a aplicação de nanofluidos como fluidos secundários em sistemas de refrigeração por compressão de vapor mediante o desenvolvimento de um modelo termodinâmico de parâmetros concentrados. Quando um nanofluido é usado como fluido térmico, sua condutividade e viscosidade aumentam com respeito às propriedades do fluido base correspondente. Como conseqüência, a irreversibilidade por transferência calor diminui enquanto que a por atrito aumenta. É aplicado o método dos coeficientes estruturais para determinar o efeito da concentração de nanopartículas no fluido secundário na irreversibilidade global do sistema, levando em consideração as inter-relações da estrutura analisada. Para estimar os limites práticos da redução da irreversibilidade térmica com o uso de nanofluidos é proposta uma otimização do custo operacional, a partir de análise termoeconômica, considerando a aplicação do novo fluido secundário no sistema, sem nenhuma outra modificação no mesmo. A partir do modelo proposto, verificado com dados experimentais do ciclo de refrigeração, simulou-se um caso particular de operação. Mediante uma otimização parcial, foi determinado o ponto de mínimo custo operacional, com a simples variação da concentração volumétrica de nanopartículas. Os resultados das otimizações fornecem diferentes valores da concentração ótima para diferentes cenários, caracterizados por vários comprimentos equivalentes do circuito secundário e diversos tempos de operação anual. Adicionalmente, o trabalho inclui um estudo sobre a aplicação de nanofluidos em um evaporador de casco e tubo, o qual foi simulado a partir de um modelo termodinâmico detalhado. Dados experimentais foram levantados para validar o modelo. / [en] The application of nanofluids as secondary fluids in vapor compression refrigeration systems is studied with the development of a lumped-parameter thermodynamic model. When a nanofluid is used as a heat transfer fluid, its thermal conductivity and viscosity increase, when compared with the corresponding properties of the base fluid. The irreversibilities due to heat transfer and due to friction decrease and increase, respectively. After irreversibility is calculated for each component, the method of structural coefficients of internal bonds is applied to determine the effect of the volumetric concentration of nanoparticles in the secondary fluid on the system s global irreversibility, taking into account the interrelations of the analyzed structure. To estimate the practical limits of thermal irreversibility reduction with nanofluid application, an optimization of operational cost was proposed, based on thermoeconomic analysis, and considering the application of the new secondary fluid on the system, without additional modifications. Based on the proposed model, which was verified by experimental data, an typical operation condition was simulated. Through partial optimization, the minimum operational cost is determined for a simple variation of volumetric concentration of nanoparticles. The results of the optimizations furnish different optimal concentration values for different scenarios. Additionally, an study of nanofluid application in a shell and tube evaporator was included. The evaporator was simulated from a detailed thermodynamic model. Experimental data were collected to validate the model.
3

Experimental Investigation of Compact Evaporators for Ultra Low Temperature Refrigeration of Microprocessors

Wadell, Robert Paul 18 July 2005 (has links)
It is well known that microprocessor performance can be improved by lowering the junction temperature. Two stage cascaded vapor compression refrigeration (VCR) is a mature, inexpensive, and reliable cooling technology that can offer chip temperatures down to ?? C. Recent studies have shown that for a power limited computer chip, there is a non-linear scaling effect that offers a 4.3X performance enhancement at ?? C. The heat transfer performance of a compact evaporator is often the bottleneck in sub-ambient heat removal. For this reason, the design of a deep sub-ambient compact evaporator is critical to the cooling system performance and has not been addressed in the literature. Four compact evaporator designs were investigated as feasible designs - a baseline case with no enhancement structures, micro channels, inline pin fin arrays, and alternating pin fin arrays. A parametric experimental investigation of four compact evaporator designs has been performed aiming at enhancing heat transfer. Each evaporator consists of oxygen free copper and has a footprint of 20 mm x 36 mm, with a total thickness of 3.1 mm. The micro channel evaporator contains 13 channels that are 400 um wide by 1.2 mm deep, and the pin fin evaporators contain approximately 80 pin fins that are 400 um wide by 1.2 mm tall with a pitch of 800 um. Two phase convective boiling of R508b refrigerant was investigated in each evaporator at flow rates of 50 - 70 g/min and saturation temperatures of ??to ??C. Pressure drop and local heat transfer measurements are reported and used to explain the performance of the various evaporator geometries. The results are compared to predictions from popular macro- and micro-channel heat transfer and pressure drop correlations. The challenges of implementing a two stage cascade VCR systems for microprocessor refrigeration are also discussed.
4

Design And Simulation Of A Vapor Compression Refrigeration Cycle For A Micro Refrigerator

Yildiz, Seyfettin 01 June 2010 (has links) (PDF)
Cooling of electronic equipments has become an important issue as the advances in technology enabled the fabrication of very small devices. The main challenge in cooling is the space limitation. The use of miniature refrigerators seems to be a solution alternative for the cooling problem. The objective of this study is to design and simulate a vapor compression refrigeration cycle for a micro-scale refrigerator. A MATLAB code is developed for the simulations. The four components of the refrigerator, namely, the condenser, evaporator, compressor and the capillary tube are designed separately. The cycle is successfully completed nearly at the same point where it begins. The cold space temperature, ambient air temperature, condensation and evaporation temperatures, and the evaporator heat load are the predetermined parameters. A fan is used to cool the condenser, and the compressor is selected as isentropic. R-134A is selected as the refrigerant and a simple interpolation code is developed to obtain the thermophysical properties of R-134A. The original design is carried out with an isentropic compressor. For the purpose of comparison, a cycle with a polytropic compressor is also considered. Similarly, two alternative designs for the evaporator are developed and simulated. A second law analysis is performed at the end of the study.
5

Theoretical And Experimental Performance Analysis Of A Solar Assisted Heat Pump

Caglar, Ahmet 01 December 2006 (has links) (PDF)
In this thesis, performance of a heat pump aided by solar heating system with an evacuated tubular collector has been analyzed theoretically and experimentally. For this purpose, a domestic hot water heating system has been designed, constructed and tested. The evacuated tubular solar collector has been used to achieve higher collector efficiency in winter. The fraction of the solar energy utilized has been measured experimentally and estimated theoretically. Effects of various parameters have been investigated on the performance of the proposed system. A mathematical model was developed to investigate the effects of different environmental, design and operational parameters on the solar heating system. In order to compare the obtained theoretical results with experimental ones, an experimental study has been carried out. For that, a number of experiments have been made at the solar house of the Mechanical Engineering Department of METU. An air-to-air heat pump was integrated with an evacuated tubular solar water heater unit (closed water circulation) and the performance of it has been studied experimentally. As a result of the experimental study, the maximum value of the coefficient of performance of the solar assisted heat pump used in this study was obtained as 4.85. The second law efficiency of the system was between 4.8-27.4 %.
6

Výpočet tepelné zátěže vlakové klimatizační jednotky / Calculation of the heat load of the train air conditioning unit

Kasal, Milan January 2018 (has links)
The subject of this diploma thesis is to apply the knowledge of thermodynamics when designing parameters of the train air conditioning unit. In the first part, the issue of air conditioning technology, basic types of cooling circuits and description of individual components are outlined. Furthermore, there is an overview of groups of refrigerants and their labelling. In the second part, a calculation of the heat load of the train unit for the limit design conditions of summer and winter operation, including the application of humid air theory are to be found. There is a basic procedure for designing the main components of compressor cooling, which is almost exclusively used in train applications, outlined. The last part contains the procedure for calculating the gains/losses in the distribution channels of the real air conditioning unit M7 and the evaluation of the results. In the appendix, there is an SW in MS Excel program, which can be indicatively used to calculate the total gains/losses of the distribution channels on any air-conditioning unit before the air enters into the train unit.
7

[en] PROJECT AND SIMULATION OF A TEST BENCH FOR STEADY-STATE OPERATION OF A REFRIGERATION SYSTEM / [pt] PROPOSTA E SIMULAÇÃO DE UMA BANCADA DE TESTES DE UM SISTEMA DE REFRIGERAÇÃO OPERANDO EM REGIME PERMANENTE

CARLOS MARX DA SILVA DE CARVALHO 03 June 2014 (has links)
[pt] O presente trabalho trata do projeto, modelagem e simulação de uma bancada de testes, com a finalidade de mensurar o desempenho de componentes de refrigeração, para ciclos por compressão de vapor. A configuração da bancada foi concebida para oferecer flexibilidade na escolha dos componentes e estabilidade durante a realização dos experimentos. Um modelo matemático foi desenvolvido e implementado a partir da aplicação dos princípios de conservação da massa e energia para cada um dos volumes de controle dos componentes da bancada. A modelagem considera também as equações de troca de calor, propriedades termodinâmicas e modelos físicos dos componentes, para prever condições de operação da bancada operando em regime permanente. Para a modelagem computacional utilizou-se o software EES-Engineering Equation Solver. O modelo resultante também foi utilizado no pré-dimensionamento dos subsistemas da bancada e na simulação de parâmetros característicos, a fim de delimitar a faixa de capacidades, bem como as variáveis de entrada e saída, necessárias ao controle do sistema. O dimensionamento e a seleção dos equipamentos e componentes foram efetuados com base no refrigerante R134a, como fluido de trabalho. No entanto, o modelo é compatível com a utilização de outros refrigerantes, tais como o R22, R407C, R410A, e outras misturas. O trabalho inclui um modelo para simular o comportamento em regime transiente do tanque inercial térmico com o intuito de estudar a estabilidade e o controle do sistema em regime permanente. A simulação demonstrou que a configuração da bancada garantirá estabilidade e reprodutibilidade dos experimentos nas eventuais variações das condições externas, diferindo, portanto, de grande parte dos sistemas de refrigeração convencionais. / [en] The present work deals with the design, modeling and simulation of a test bench used in evaluating the performance of components of vapor compression refrigeration systems. The mathematical model was developed and implemented based on the application of the conservation of mass and energy principles to each of the control volumes, heat transfer equations, thermodynamic properties for refrigerant and water and existing physical models for the system components were also applied. The software EES-Engineering Equation Solver was used as the computational platform. The resulting simulation program was initially used to size the test bench subsystems and to simulate characteristic parameters in order to determine the range of capacities and input and output variables. Refrigerant R-134a was the working substance considered when sizing and choosing system components, but the model can also be used with R22 refrigerants as well as R410A, R407C and others refrigerant mixtures. The work also includes a transient analysis of the thermal inertial tank with focus on the study of the operational control for the system being operated at steady state. The simulation showed that the layout of the test bench will warrant stability and reproducibility of experiments for eventual changes in the external condition, thus differing from typical conventional vapor compression refrigeration systems.
8

[en] OPTIMIZATION THE CIRCUITING REFRIGERATION OF THE HEAT EXCHANGERS IN VAPOR COMPRESSION REFRIGERATION SYSTEMS / [pt] OTIMIZAÇÃO DOS CIRCUITOS DE REFRIGERANTE NOS TROCADORES DE CALOR DE SISTEMAS DE REFRIGERAÇÃO POR COMPRESSÃO DE VAPOR

LUIS CARLOS CASTILLO MARTINEZ 16 October 2017 (has links)
[pt] Em sistemas de refrigeração por compressão de vapor, o projeto adequado dos circuitos para o refrigerante nos trocadores de calor pode ter um impacto significativo no seu coeficiente de performance (COP). O projeto otimizado dos circuitos de refrigerante em sistemas de refrigeração com trocadores de calor do tipo tubo-aletado não é trivial, devido à complexidade de sua representação assim como o elevado número de possíveis combinações, mesmo quando metodologias inteligentes de otimização são empregadas. No presente trabalho propõe-se uma nova metodologia para a otimização simultânea (condensador e evaporador) dos circuitos do refrigerante em sistemas de refrigeração com trocadores de calor de tipo tubo-aletado. Esta metodologia, aqui denominada como GAFIS (Genetic algorithms applied in filtered spaces), mostra-se mais eficiente que as metodologias até então descritas na literatura. Foi aplicado o método GAFIS, em conjunto com um simulador completo para o sistema de refrigeração, Genesym, na otimização de unidades comerciais de condicionamento de ar de alto desempenho. Estudaram-se casos onde o sistema atingiu aumentos de até 15,3 por cento no coeficiente de performance. Em outros estudos, obtiveram-se casos onde o custo de produção foi reduzido em 3,85 por cento (do custo total da unidade), mantendo-se um similar desempenho (capacidade e COP). Testes de otimização, considerando-se diferentes diâmetros dos tubos, na construção dos trocadores de calor, e sistemas com distribuição não uniforme de velocidade de ar, também foram realizados com o GAFIS. Igualmente foram estudados condensadores de microcanais, devido ao interesse atual da indústria com estes trocadores de calor. A otimização do circuito para o refrigerante, neste caso, é relativamente simples, devido ao baixo custo computacional das simulações. Entretanto, modelos de simulação adequados para estes tipos de trocadores de calor só recentemente começaram a surgir, e não têm sido explorados de maneira adequada até a presente data. Explorou-se no presente trabalho, a influência, no desempenho térmico do condensador, dos parâmetros que definem o circuito do refrigerante. Para tal efeito, desenvolveu-se um modelo de simulação baseado em análise local, validado com dados experimentais disponíveis, de condensadores de microcanais de uso automotivo com diâmetro hidráulico (lado do refrigerante) de 0,9 e 1,0mm, para refrigerantes R-134a, Fluid-H e R-1234yf. Foram encontradas relações diretas entre os parâmetros geométricos que definem os circuitos de refrigerante no condensador e seu desempenho térmico. Tal fato pode ser utilizado como orientação expedita para o projeto do circuito ótimo do condensador. / [en] Refrigerant circuiting in condensers and evaporators has a significant effect in the performance of refrigeration systems. The optimized project of the refrigerant circuits in refrigeration systems with plate-fin heat exchangers is not trivial, due to the complexity of their representation as well as the high number of possible combinations, even when methodologies of intelligent optimization are used. The present work proposes a new methodology for the simultaneous optimization of refrigerant circuiting in air-air refrigeration systems with plate-fin heat exchangers. This new methodology, here defined as GAFIS (Genetic algorithms applied in filtered spaces), has proven to be more efficient than traditional methods. The GAFIS method was applied, in conjunction with a full refrigeration system simulator, Genesym, for the optimization of high performance commercial air-conditioning units. Typical cases were studied and a coefficient of performance improvement of up to 15.3 percent has been observed. In other studies, there were cases where the manufacturer s predicted cost was reduced in 3,85 percent (of total cost of the unit), while a similar thermal performance (capacity and COP) was maintained. Optimization tests, considering different diameters of tube, for the construction of heat exchangers, as well as systems with non-uniform air velocity distribution, were also performed with the GAFIS method. Microchannel condensers were also studied, given the current interest of industry on this kind of heat exchanger. The optimization of the refrigerant circuiting, in this case, would not be a major problem, due to the low computational cost of its simulation. However, simulation models appropriate for these types of heat exchangers have only been recently in use, and, to date, have not been adequately explored. In the present work, the influence on condenser performance of parameters that define the refrigerant circuiting has been investigated. For this purpose, a simulation model, based on local analysis, was developed. It was validated against experimental data, available from automotive microchannel condenser tests, with hydraulic diameters (refrigerantside) of 0.9 and 1.0mm for refrigerants R-134a, Fluid-H and R-1234yf. A direct relation was found between the geometric parameters that define the condenser refrigerant circuiting and its thermal performance. This fact can be appropriately used as guidance for expeditious design practices of the optimal refrigerant circuit of the condenser.
9

Modelování a řízení toků elektrické a tepelné energie v plně elektrických automobilech / Modeling and Control of Electric and Thermal Flows in Fully Electric Vehicles

Glos, Jan January 2020 (has links)
Systematické řízení tepelných a elektrických toků v plně elektrických automobilech se stává velmi důležitým, protože v těchto typech automobilů není k dispozici dostatek odpadního tepla pro vytápění kabiny. Aby v zimním období nedocházelo ke snížení dojezdu, je nutné použití technologií, které umožní snížení spotřeby energie nutné k vytápění kabiny (např. tepelné čerpadlo, zásobník tepla). Je také zapotřebí vytvořit řídicí algoritmy pro tato zařízení, aby byl zajištěn jejich optimální provoz. V letním období je nezbytné řídit tepelné toky v rámci elektromobilu tak, aby nedocházelo k nadměrnému vybíjení baterie kvůli chlazení kabiny a dalších částí. Tato práce řeší jak návrh řídicích algoritmů, tak i vývoj rozhodovacího algoritmu, který zajistí směřování tepelných toků.

Page generated in 0.1707 seconds