• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement of the muon neutrino inclusive charged current cross section on iron using the MINOS detector

Loiacono, Laura Jean 07 January 2011 (has links)
The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment [nu]-A, (MINER[nu]A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via [mathematical equation], where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the [nu subscript mu] inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current [nu subscript mu] interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux. / text
2

Measurement of Muon Neutrino Disappearance with the T2K Experiment

Wongjirad, Taritree January 2014 (has links)
<p>We describe the measurement of muon neutrino disappearance due to</p><p>neutrino oscillation using the Tokai-2-Kamiokande (T2K) experiment's Run 1-4 (6.57&times;10<super>20</super> POT)</p><p>data set. We analyze the data using the conventional</p><p>Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing</p><p>matrix for the three Standard Model neutrinos. The output of the</p><p>analysis is a measurement of the parameters sin<super>2</super>&theta;<sub>23</sub>, &Delta;m<super>2</super><sub>32</sub> for the normal hierarchy and sin<super>2</super>&theta;<sub>23</sub>, &Delta;m<super>2</super><sub>13</sub> for</p><p>the inverted hierarchy. The best-fit oscillation</p><p>parameters for the normal hierarchy are found to be</p><p>(sin<super>2</super>&theta;<sub>23</sub>, &Delta;m<super>2</super><sub>32</sub>) = ( 0.514, 2.51&times;10<super>-3</super> eV<super>2</super>/c<super>4</super>}). The 90% 1D confidence interval -- determined for both parameters</p><p>using the Feldman-Cousins procedure -- is for the normal hierarchy</p><p>0.428 < sin<super>2</super>&theta;<sub>23</sub> < 0.598 and</p><p>2.34&times;10<super>-3</super> eV<super>2</super>/c<super>4</super> < &Delta;m<super>2</super><sub>32</sub> < 2.68\times10^{-3} eV<super>2</super>/c<super>4</super>. </p><p>For the inverted hierarchy, the best-fit oscillation parameters are</p><p>(sin<super>2</super>&theta;<sub>23</sub>, &Delta;m<super>2</super><sub>13</sub>) = (0.511, 2.48&times;10<super>-3</super> eV<super>2</super>/c<super>4</super>. The 90\% 1D Feldman-Cousins confidence intervals for the inverted hierarchy are 2.31&times;10<super>-3</super> eV<super>2</super>/c<super>4</super> < \Delta m^2_{13} < 2.64&times;10<super>-3</super> eV<super>2</super>/c<super>4</super>.</p> / Dissertation
3

A search for a prompt atmospheric muon neutrino flux in the northern hemisphere using data releases from IceCube

Haberland, Marcus January 2020 (has links)
The IceCube Neutrino Observatory is a cubic kilometre scale detector for high-energy neutrinos above hundreds of GeV produced in Earth’s atmosphere as well as outside our solar system whenever particles are accelerated to ultra-relativistic energies. The prompt atmospheric contribution is a result of the creation of heavy mesons with charm components in the atmosphere. Past studies from IceCube using a maximum likelihood estimation over the whole neutrino energy spectrum always reported a best-fit zero prompt contribution so far [1–5], contrary to theory [6, 7]. In this analysis we tried to measure this prompt atmospheric flux in muon neutrino event data from different IceCube releases. In contrast to past studies we performed a binned least-squares fit of the conventional atmospheric flux from data at low energies and subtracted this fit and an astrophysical flux reported by IceCube to measure a prompt contribution. Due to a lack of statistics and accessible information from data releases, our results are also compatible with a zero prompt contribution.
4

HARP Targets Pion Production Cross Section and Yield Measurements: Implications for MiniBooNE Neutrino Flux

Wickremasinghe, Don Athula A. 12 October 2015 (has links)
No description available.
5

The development of a novel technique for characterizing the MICE muon beam and demonstrating its suitability for a muon cooling measurement

Rayner, Mark Alastair January 2012 (has links)
The International Muon Ionization Cooling Experiment (MICE) is designed to demonstrate the currently untested technique of ionization cooling. Theoretically, this process can condition the high quality muon beams required to build a neutrino factory or muon collider which will be the next generation of machines for the study of Particle Physics. The beam line to transport muons into the MICE cooling channel lattice cell was installed in December 2009. Step I of the experimental programme, whose goal was to demonstrate that the beam line can generate beams similar to those expected in a neutrino factory cooling channel, was completed in August 2010. Methods were developed to use time difference measurements in the MICE time of flight counters (TOFs) to obtain a transverse spatial resolution of approximately 10 mm and to track muons through the focusing elements of the beam line, thus allowing the trace space vectors of individual muons to be reconstructed and their integrated path length to be calculated. The TOFs were used to make an absolute measurement of the momentum of muons with zero bias and a systematic error of less than 3 MeV/c. The measured trace space vectors of single muons were used to estimate the emittances and approximate optical parameters of eighteen muon beams. The results of beam line simulations were compared with the measurements and, once the effects of experimental resolution had had been included, found to be in good agreement. A sample of individual muons whose phase space vectors had been measured was injected into a simulation of the full MICE cooling channel; the beam was found to be suitable for demonstrating muon cooling, although some fine tuning of the cooling channel optics will eventually be required.
6

Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector

Garza, Juan Pablo Yáñez 15 August 2014 (has links)
Neutrinooszillationen sind ein sehr aktives Forschungsfeld. In den letzten Jahrzehnten haben viele Experimente das Phänomen untersucht und sind inzwischen zu Präazisionsmessungen vorangeschritten. Mit seiner Niederenergieerweiterung DeepCore kann das IceCube-Experiment zu diesem Forschungsfeld beitragen. IceCube ist ein 1 km^3 großes Tscherenkow-Neutrino-Teleskop, welches das tiefe, antarktische Eis des Südpols als optisches Medium nutzt. DeepCore ist eine Erweiterung mit dichterer Instrumentierung im unteren Teil des IceCube-Teleskops. Diese dichte Instrumentierung ermöglicht den Nachweis von Neutrinos mit Energien ab einer Energieschwelle von etwa 10 GeV. Jedes Jahr werden Tausende von atmosphärischen Neutrinos oberhalb dieser Schwelle in DeepCore detektiert. Eine Bestimmung der Energie der Neutrinos und des durch sie zurückgelegten Weges durch die Erde ermöglicht die Messung von Neutrinooszillationen. In dieser Arbeit werden zunächst die Möglichkeiten von DeepCore diskutiert, Oszillationen auf unterschiedliche Weise zu messen. Das Verschwinden von Myon-Neutrinos wird als erfolgsversprechender Prozess ausgewählt. Darauf folgt die Beschreibung einer Methode zur Identifizierung von Tscherenkow-Photonen, welche detektiert wurden, bevor sie gestreut wurden -sogenannte- direkte Photonen. Mit Hilfe dieser Photonen kann der Zenitwinkel der Myon-Neutrinos bestimmmt werden. Auch die Energie der Neutrinos wird rekonstruiert. In den Jahren 2011 und 2012 wurden innerhalb von 343 Tagen mit dieser Analyse 1487 Neutrinokandidaten mit Energien zwischen 7 GeV und 100 GeV in DeepCore gefunden. Vergleicht man diese Zahl mit der erwarteten Zahl vom atmosphärischen Neutrinofluss ohne Oszillationen, so ergibt sich ein Defizit von etwa 500 Ereignissen. Die Osziallationsparameter, die die Daten am besten beschreiben, sind im Einklang mit den Parametern, die von anderen Experimenten veröffentlicht wurden. / The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km^3 ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of muon neutrinos is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are in agreement with the results reported by other experiments. The method and tools presented allow DeepCore to reach comparable precision with the current best results of on-going experiments once five years of data are collected.

Page generated in 0.0691 seconds